• Title/Summary/Keyword: aircraft wing

Search Result 427, Processing Time 0.021 seconds

Design and Analysis of Wing-Tip and Wing-Body Fairings (날개 끝과 날개 동체 페어링의 설계 및 공력해석)

  • Park, Sang-Il;Kwak, Ein-Keun;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.289-296
    • /
    • 2011
  • In this study, fairing configurations for an aircraft are designed and the aerodynamic analyses of the fairings are performed to find the best choice for the aircraft. Fairings considered are wing-tip fairing and wing-body fairing. Wing alone analyses are done for the wing-tip faring selection, while wing-body-tail analyses are done for the wing-body fairing selection. A 3-D RANS solver with Menter's ${\kappa}-{\omega}$ SST turbulence model are used for the aerodynamic analyses. The effects on the drag of the aircraft are examined by comparing the analysis results with and without the farings.

A Study on the Damage of Aircraft Wing Attacked by Anti-Aircraft Artillery (대공포 피격에 의한 항공기 날개 손상에 관한 연구)

  • Sim, Sang-Ki;Yoon, Kyong-Sik;Kim, Geun-Won;Shin, Ki-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.738-745
    • /
    • 2012
  • Aircraft battle damage repair(ABDR) is emergency repair method for the damaged aircraft in battle field. The main purpose of the ABDR is to increase the readiness of fighter aircraft during wartime. While many studies have been conducted to develop ABDR method, few efforts have focused on evaluation of damage and determination of the size of hole caused by enemy's anti-aircraft artillery attack. The aim of this study is essentially to quantify damage of aircraft wing attacked by anti-aircraft artillery. The computer simulations was performed to accomplish this goal. A number of simulations have been carried out to compare size of damages under various attack conditions. In conclusion, it was revealed that the size of damage varied depending on the type and direction of cannonball. Furthermore, in this paper, the proper path sizes are suggested for different damage conditions.

Aerodynamic Shape Design Method for Wing Planform Using Metamodel (근사모델을 이용한 날개 평면형상 공력형상설계 방법)

  • Bae, Hyogil;Jeong, Sora
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.18-23
    • /
    • 2014
  • In preliminary design phase, the wing geometry of the civil aircraft was determined using the empirical equation and historical data. To make wing geometry more aerodynamically efficient, an aerodynamic shape optimization was conducted. For this purpose the parametric modeling, high fidelity CFD analysis and metamodel-based optimal design technique were adopted. The parametric modeling got the design process to achieve the improvement by generating the configuration outputs easily for the major design variables. The optimal design equations were formularized as the type of the multi-objective functions considering low/high speed and lift/drag coefficient. The optimal solution was explored with the help of the kriging metamodel and the desirability function, therefore the optimal wing planform was sought to be excellent at both low and high speed region. Additionally the optimal wing planform was validated that it was excellent not only at the specific AOA, but also all over the range of AOA.

ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF THE MAIN WING SECTION OF KC-100 AIRCRAFT (KC-100 항공기 주날개의 결빙에 의한 공력 영향성 연구)

  • Lee, C.H.;Sin, S.M.;Jung, S.K.;Myong, R.S.;Cho, T.H.;Jung, J.H.;Jeong, H.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.464-467
    • /
    • 2010
  • Ice accretion on aircraft surface in icing condition induces external shape changes that may result in a hazard factor for aircraft safety. In case of aircraft main wing with high lift equipment, ice accretion is observed around leading edge and flap. During the design phase, location of ice accretion and associated aerodynamic characteristics must be investigated. In this study, icing effects on aerodynamic characteristics of the main wing section of KC-100 aircraft are investigated using an Eulerian-based FENSAP-ICE code in various icing conditions.

  • PDF

Reconfigurable Flight Control Design for the Complex Damaged Blended Wing Body Aircraft

  • Ahn, Jongmin;Kim, Kijoon;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.290-299
    • /
    • 2017
  • Reconfigurable flight control using various kinds of adaptive control methods has been studied since the 1970s to enhance the survivability of aircraft in case of severe in-flight failure. Early studies were mainly focused on the failure of actuators. Recently, studies of reconfigurable flight controls that can accommodate complex damage (partial wing and tail loss) in conventional aircraft were reported. However, the partial wing loss effects on the aerodynamics of conventional type aircraft are quite different to those of BWB(blended wing body) aircraft. In this paper, a reconfigurable flight control algorithm was designed using a direct model reference adaptive method to overcome the instability caused by a complex damage of a BWB aircraft. A model reference adaptive control was incorporated into the inner loop rate control system enhancing the performance of the baseline control to cope with abrupt loss of stability. Gains of the model reference adaptive control were polled out using the Liapunov's stability theorem. Outer loop attitude autopilot was designed to manage roll and pitch of the BWB UAV as well. A 6-DOF dynamic model was built-up, where the normal flight can be made to switch to the damaged state abruptly reflecting the possible real flight situation. 22% of right wing loss as well as 25% loss for both vertical tail and rudder control surface were considered in this study. Static aerodynamic coefficients were obtained via wind tunnel test. Numerical simulations were conducted to demonstrate the performance of the reconfigurable flight control system.

Vibration Control of Composite Wing-Rotor System of Tiltrotor Aircraft (틸트로터 항공기 복합재료 날개의 진동 제어)

  • Song, Oh-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.509-516
    • /
    • 2007
  • Mathematical modeling and vibration control of a tiltrotor aircraft composite wing-rotor system are investigated in this study. A wing-mounted rotor can be tilted from the vertical position to a horizontal one, and vice versa. Effect of vibration control of the wing-rotor system via piezoelectricity is studied as a function of tilt angle, ply angle of composite wing and rotor's spin speed. Composite wing is modeled as a thin-walled box beam having a circumferentially uniform stiffness configuration that produces elastic coupling between flap-lag and between extension-twist behavior. Numerical simulations are provided and pertinent conclusions are outlined.

Nonlinear Shell Finite Element and Parallel Computing Algorithm for Aircraft Wing-box Structural Analysis (항공기 Wing-box 구조해석을 위한 비선형 쉘 유한요소 및 병렬계산 기법 개발)

  • Kim, Hyejin;Kim, Seonghwan;Hong, Jiwoo;Cho, Haeseong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.565-571
    • /
    • 2020
  • In this paper, precision and efficient nonlinear structural analysis for the aircraft wing-box model is developed. Herein, nonlinear shell element based on the co-rotational (CR) formulation is implemented. Then, parallel computing algorithm, the element-based partitioning technique is developed to accelerate the computational efficiency of the nonlinear structural analysis. Finally, computational performance, i.e., accuracy and efficiency, of the proposed analysis is evaluated by comparing with that of the existing commercial software.

Enhancing aerodynamic performance of NACA 4412 aircraft wing using leading edge modification

  • Kumar, B. Ravi
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.271-277
    • /
    • 2019
  • This work deals with designing the aircraft wing and simulating the flow behavior on it to determine the aerodynamically efficient wing design. A NACA 4412 airfoil is used to design the base wing model. A wing with a rectangular planform and the one with curved leading edge planform was designed such that their surface areas are the same. Then, a comprehensive flow analysis is carried out at various velocities and angle of attacks using computational fluid dynamics (CFD) and the results were interpreted and compared with the experimental values. This study shows that there is a significant improvement in the aerodynamic performance of the curved leading edge wing over the wing with rectangular planform.

Variable camber morphing wing mechanism using deployable scissor structure: Design, analysis and manufacturing

  • Choi, Yeeryung;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.103-117
    • /
    • 2022
  • In this paper, a novel morphing mechanism using a deployable scissor structure was proposed for a variable camber morphing wing. The mechanism was designed through the optimization process so that the rib can form the target airfoils with different cambers. Lastly, the morphing wing was manufactured and its performance was successfully evaluated. The mechanism of the morphing wing rib was realized by a set of deployable scissor structure that can form diverse curvatures. This characteristic of the structure allows the mechanism to vary the camber that refers to the airfoil's curvature. The mechanism is not restrictive in defining the target shapes, allowing various airfoils and overall morphing wing shape to be implemented.

THE ICE ANALYSIS OF HIGH ASPECT RATIO WING USING FENSAP-ICE (FENSAP-ICE를 이용한 고세장비 날개 결빙해석)

  • Jung, K.J.;Lee, J.H.;Kang, I.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.456-459
    • /
    • 2010
  • Icing is one of the most serious hazards for aircraft. The amount and rate of icing depend on a number of meteorogical and aerodynamic factors. Of primary importance are amount of liquid water content of droplets, their size, the temperature of aircraft surfaces, the collection efficiency, and the extent of supercooled droplets. In this study, in-flight icing analysis of low reynolds number high aspect ratio wing is carried out by using FENSAP-ICE. Each liquid water contents with altitude is obtained from FAR 25 Appendix-C. And the collectoin efficiency is calculated to check out the ice accretion position of wing with two angles of attack. The degradation of aerodynamic characteristics of aircraft are figured out by investigating the accretion of rime and glaze ice.

  • PDF