DOI QR코드

DOI QR Code

Enhancing aerodynamic performance of NACA 4412 aircraft wing using leading edge modification

  • Kumar, B. Ravi (School of Mechanical Engineering, SASTRA Deemed University)
  • Received : 2018.11.11
  • Accepted : 2019.09.02
  • Published : 2019.10.25

Abstract

This work deals with designing the aircraft wing and simulating the flow behavior on it to determine the aerodynamically efficient wing design. A NACA 4412 airfoil is used to design the base wing model. A wing with a rectangular planform and the one with curved leading edge planform was designed such that their surface areas are the same. Then, a comprehensive flow analysis is carried out at various velocities and angle of attacks using computational fluid dynamics (CFD) and the results were interpreted and compared with the experimental values. This study shows that there is a significant improvement in the aerodynamic performance of the curved leading edge wing over the wing with rectangular planform.

Keywords

References

  1. Abbishek, R, Kumar, B.R. and Subramanian, H.S. (2017), "Fatigue analysis and design optimization of aircraft's central fuselage", IOP Conference Series: Materials Science and Engineering, 225(1), 012031. doi:10.1088/1757-899X/225/1/012031.
  2. Anderson, J. (2013), "Fundamentals of aerodynamics", McGraw-Hill Education/Asia 5, 15-22.
  3. Aresti, L., Tutar, M., Chen, Y. and Calay, R.K. (2013), "Computational study of a small scale Vertical Axis Wind Turbine (VAWT): Comparative performance of various turbulence models", Wind Struct., 17(6), 647-670. doi:10.12989/was.2013.17.6.647.
  4. Devi, P.B. and Shah, D.A. (2017), "Numerical simulation of dimples in airfoil using MATLAB", IOP Conference Series: Materials Science and Engineering 197 (1). IOP Publishing: 012080. doi:10.1088/1757-899X/197/1/012080.
  5. Borna, A., Habashi, W.G., McClure, G. and Nadarajah, S.K. (2013), "CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping", Wind Struct., 16(5), 411-431. doi:10.12989/was.2013.16.5.411.
  6. Chamorro, L.P., Arndt, R.E.A. and Sotiropoulos, F. (2013), "Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strategies", Renewable Energy, 50, 1095-1105. doi:10.1016/J.RENENE.2012.09.001.
  7. Dong, G.J. and Lu, X.Y. (2007), "Characteristics of flow over traveling wavy foils in a side-by-side arrangement", Phys. Fluids, 19(5), 057107. doi:10.1063/1.2736083.
  8. Dwivedi, Y.D., Prasad, M.S. and Dwivedi, S. (2013), "Experimental aerodynamic static stability analysis of different wing planforms", Int. J. Adv. Res. Technol., 2(6), 60-63.
  9. Ghasemi, A.R., Jahanshir, A. and Tarighat, M.H. (2014), "Numerical and analytical study of aeroelastic characteristics of wind turbine composite blades", Wind Struct., 18(2), 103-116. doi:10.12989/was.2014.18.2.103.
  10. Gregorio, De F. (2012), "Flow field characterization and interactional aerodynamics analysis of a complete helicopter", Aerosp. Sci. Technol., 19(1), 19-36. doi:10.1016/J.AST.2011.11.002.
  11. Haoqin, S., Xiaoxiang, B., Jianhua, L., Kai, L., Mengxi, C. and Jing, S. (2015), "Calculation and analysis on stealth and aerodynamics characteristics of a medium altitude long endurance UAV", Procedia Eng., 99, 111-115. doi:10.1016/J.PROENG.2014.12.514.
  12. Haque, M.N., Ali, M. and Ara, I. (2015), "Experimental investigation on the performance of NACA 4412 aerofoil with curved leading edge planform", Procedia Eng., 105, 232-240. doi:10.1016/J.PROENG.2015.05.099.
  13. Kaynak, U. and Flores, J. (1989), "Advances in the computation of transonic separated flows over finite wings", Comput. Fluids, 17(2), 313-332. doi:10.1016/0045-7930(89)90045-5.
  14. Ke, S., Yu, W., Wang, T., Ge, Y. and Tamura, Y. (2017), "Analysis of the effect of blade positions on the aerodynamic performances of wind turbine tower-blade system in halt states", Wind Struct., 24(3), 205-221. doi:10.12989/was.2017.24.3.205.
  15. Keerthana, M. and Harikrishna, P. (2017), "Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence", Wind Struct., 25(3), 301-328. doi:10.12989/WAS.2017.25.3.301.
  16. Kim, S., Alam, M.M. and Russel, M. (2016), "Aerodynamics of a Cylinder in the Wake of a V-Shaped Object", Wind Struct., 23(2), 143-155. doi:10.12989/was.2016.23.2.143.
  17. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube van der waals forces", Adv. Nano Res., 6(2). 135. doi:10.12989/ANR.2018.6.2.135.
  18. Kumar, B.R. (2018), "Investigation on buckling response of the aircraft's wing using finite-element method", Australian Journal of Mechanical Engineering In press. Taylor & Francis: 1-10. doi:10.1080/14484846.2018.1483467.
  19. Kumar, B.R., Mano, S. and Subramanian, H.S. (2017), "Vibration analysis and design modification of automobile muffler", J. Adv. Res. Dynam.Control Syst.,11, 99-107.
  20. Kundu, P.K., Cohen, I.M., Dowling, D.R., Kundu, P.K., Cohen, I.M. and Dowling, D.R. (2016), "Aerodynamics", Fluid Mech., 773-817. doi:10.1016/B978-0-12-405935-1.00014-9.
  21. Lin, Y.F., Bai, H.L. and Alam, M.M. (2016), "The turbulent wake of a square prism with wavy faces", Wind Struct., 23(2). 127-142. doi:10.12989/was.2016.23.2.127.
  22. Lu, F., Li, Q., Shih, Y., Pierce, A. and Liu, C. (2011), "Review of micro vortex generators in high-speed flow", Proceedings of the 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics. doi:10.2514/6.2011-31.
  23. Mannion, P., Toparlar, Y., Clifford, E., Hajdukiewicz, M., Andrianne, T. and Blocken, B. (2018), "On the effects of crosswinds in tandem aerodynamics: An experimental and computational study", Eur. J. Mech. - B/Fluids, doi:10.1016/J.EUROMECHFLU.2018.11.001.
  24. Matsson, J.E., Voth, J.A., McCain, C.A. and McGraw, C. (2016), "Aerodynamic performance of the NACA 2412 airfoil at low reynolds number", ASEE Publishers, 64(1), paper id: 15014. https://peer.asee.org/aerodynamic-performance-of-the-naca2412-airfoil-at-low-reynolds-number.
  25. Mouhsine, S.El., Oukassou, K., Ichenial, M.M., Kharbouch, B. and Hajraoui, A. (2018), "Aerodynamics and structural analysis of wind turbine blade", Procedia Manufacturing, 22, 747-756. doi:10.1016/J.PROMFG.2018.03.107.
  26. Okonkwo, P. and Smith, H. (2016), "Review of evolving trends in blended wing body aircraft design", Progress in Aerospace Sciences, 82, 1-23. doi:10.1016/J.PAEROSCI.2015.12.002.
  27. Ozmen, Y. (2013), "Effect of parapets to pressure distribution on flat top of a finite cylinder", Wind Struct., 17(5), 465-477. doi:10.12989/was.2013.17.5.465.
  28. Piedra, S., Martinez, E., Escalante-Velazquez, C.A. and Jimenez, S.M.A. (2018), "Computational aerodynamics analysis of a light sport aircraft: Compliance study for stall speed and longitudinal stability certification requirements", Aerosp. Sci. Technol., 82-83, 234-242. doi:10.1016/J.AST.2018.09.016.
  29. Pinkerton, R.M. (1938), "The Variation with Reynolds Number of Pressure Distribution over an Airfoil Section", NASA Reports 613, 65-84. https://ntrs.nasa.gov/search.jsp?R=19930091689.
  30. Qin, S., Koochesfahani, M. and Jaberi, F. (2018), "Large eddy simulations of unsteady flows over a stationary airfoil", Comput. Fluids, 161, 155-170. doi:10.1016/J.COMPFLUID.2017.11.014.
  31. Saranprabhu, M.K., Kumar, B.R. and Sreehari, V.M. (2017), "Aero-thermodynamic analysis of a supersonic aircraft", J. Adv. Res. Dynam. Control Syst., 11, 120-127.
  32. Unchai, T. and Janyalertadun, A. (2014), "CFD evaluation of a suitable site for a wind turbine on a trapezoid shaped Hill", Wind Struct., 19(1), 75-88. doi:10.12989/was.2014.19.1.075.
  33. Zhao, L., Chen, X., Ke, S. and Ge, Y. (2014), "Aerodynamic and aero-elastic performances of super-large cooling towers", Wind Struct., 19(4), 443-465. doi:10.12989/was.2014.19.4.443.