DOI QR코드

DOI QR Code

Nonlinear Shell Finite Element and Parallel Computing Algorithm for Aircraft Wing-box Structural Analysis

항공기 Wing-box 구조해석을 위한 비선형 쉘 유한요소 및 병렬계산 기법 개발

  • Kim, Hyejin (Department of Aerospace Engineering, Jeonbuk National University) ;
  • Kim, Seonghwan (Department of Aerospace Engineering, Jeonbuk National University) ;
  • Hong, Jiwoo (Department of Aerospace Engineering, Jeonbuk National University) ;
  • Cho, Haeseong (Department of Aerospace Engineering, Jeonbuk National University)
  • Received : 2020.03.24
  • Accepted : 2020.07.27
  • Published : 2020.08.01

Abstract

In this paper, precision and efficient nonlinear structural analysis for the aircraft wing-box model is developed. Herein, nonlinear shell element based on the co-rotational (CR) formulation is implemented. Then, parallel computing algorithm, the element-based partitioning technique is developed to accelerate the computational efficiency of the nonlinear structural analysis. Finally, computational performance, i.e., accuracy and efficiency, of the proposed analysis is evaluated by comparing with that of the existing commercial software.

본 논문에서는 항공기 Wing-box 모델에 대한 비선형 구조해석의 계산을 정확하고 효율적으로 수행하기 위해 병렬계산 알고리즘을 개발하였다. 이를 위해 co-rotation 이론 기반 비선형 쉘 요소를 적용하였으며 요소기반 분할 병렬계산 알고리즘을 개발하였다. 기 개발 해석은 선행연구결과 및 기존 상용프로그램의 예측결과와 비교하여 정확성을 확인하였으며 병렬계산의 효율성을 분석하였다. 마지막으로 고세장비 날개 wing-box 구조에 적용하였으며 단방향 공력-구조 결합해석을 수행하였다.

Keywords

References

  1. Bathe, K. J., Ramm, E. and Wilson, E. L., "Finite Element Formulations for Large Deformation Dynamic Analysis," International Journal for Numerical Methods in Engineering, Vol. 9, 1975, pp. 353-386. https://doi.org/10.1002/nme.1620090207
  2. Rankin, C. C. and Nour-Omid, B., "An Element-independent Corotational Procedure for the Treatment of Large Rotations," ASME Journal of Pressure Vessel Technology, Vol. 108, No. 2, 1989, pp. 165-175. https://doi.org/10.1115/1.3264765
  3. Felippa, C. A. and Haugen, B., "A Unified Formulation of Small-Strain Corotational Finite Elements: I. Theory," Computational Methods in Applied Mechanics and Engineering, Vol. 194, 2005, pp. 2285-2335. https://doi.org/10.1016/j.cma.2004.07.035
  4. Farhat, C. and Roux, F. X., "A Method of Finite Element Tearing and Interconnecting and Its Parallel Solution Algorithm," International Journal for Numerical Methods in Engineering, Vol. 32, 1991, pp. 1205-1227. https://doi.org/10.1002/nme.1620320604
  5. Kwak, J. Y., Cho, H., Chun, T. Y., Shin, S. J. and Bauchau, O. A., "Domain Decomposition Approach Applied for Two- and Three-dimensional Problems via Direct Solution Methodology," The International Journal of Aeronautical and Space Sciences, Vol. 16, No. 2, 2015, pp. 177-189. https://doi.org/10.5139/IJASS.2015.16.2.177
  6. Cho, H., Lee, N., Shin, S. J. and Lee, S., "Computational Study of Fluid-Structure Interaction on Flapping Wing under Passive Pitching Motion," Journal of Aerospace Engineering, Vol. 32, No. 4, 2019, pp. 04019023. https://doi.org/10.1061/(asce)as.1943-5525.0001011
  7. Khosravi, P., Ganesa, R. and Sedaghati, R., "Corotational non-linear analysis of thin plate and shell using a new shell element," International Journal for Numerical Methods in Engineering, Vol. 69, No. 4, 2007, pp. 859-885. https://doi.org/10.1002/nme.1791
  8. Karypis, G., "METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices Ver. 5.1.0," University of Minnesota, Minneapolis, MN, 2013.
  9. Intel Math Kernel Library (Intel MKL) 11.0. http://software.intel.com/en-us/intel-mkl, 2014.
  10. Brank, B., Peric, D. and Damjanic, F. B., "On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells," Computational Mechanics, Vol. 16, 1995, pp. 341-359. https://doi.org/10.1007/BF00350723
  11. Sze, K. Y., Liu, X. H. and Lo, S. H., "Popular benchmark problem for geometric nonlinear analysis of shells," Finite Elements in Analysis and Design, Vol. 40, 2004, pp. 1551-1569. https://doi.org/10.1016/j.finel.2003.11.001
  12. Kee, Y. J. and Shin, S. J., "Structural dynamic modeling for rotation blades using three dimensional finite elements," Journal of Mechanical Science and Technology, Vol. 29, No. 4, 2014, pp. 1607-1618. https://doi.org/10.1007/s12206-015-0332-6
  13. Aldridge, E. C. and Stenbit, J. P., Unmanned Aerial Vehicles Roadmap 2002-2027, Office of the Secretary of Defense, Washington, 2002, p. 6.
  14. Hicks, R. M. and Cliff, S. E., "An Evaluation of Three Two-Dimensional Computational Fluid Dynamics Codes Including Low Reynolds Numbers and Transonic Mach Numbers," NASA TM 102840, 1991.
  15. Kaufman, J. G., Introduction to Aluminum Alloys and Tempers, ASM International, 2000, p. 45.
  16. ASM Aerospace Specification Metals Inc., "A SM Material Data Sheet," http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2024T3