• 제목/요약/키워드: airbag

검색결과 126건 처리시간 0.022초

에어백 단품설계를 위한 전개과정과 승객거동해석 (Analyses of Deployment Process and Sled Test for Designing Airbag Module)

  • 김헌영;이상근;신윤재
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.118-128
    • /
    • 1998
  • Finite element analyses are carried out to provide results usable in the design of airbag module that consists of inflater, cushion, cover, mounting plate, etc. In the first phase, a deployment process of airbag module is analyzed to evaluate the pressure waveform of developed airbag and deployment characteristics, and is compared with the test results. Interaction between head form and inflated airbag module is investigated in the second phase. In the last stage, sled test with rigid dummy, airbag midule, driving system and car interior part are simulated to investigate the influence of airbag design factor on the behavior of dummy with seat belt. The procedures can be provided as a guideline for airbag module design and improvement of airbag module performance.

  • PDF

운전석 및 조수석 에어백 단품의 유한요소 모델링과 전개 과정 해석 (Finite Element Modeling of Folded Airbag and Analysis of Deployment Process)

  • 김헌영;이상근;신윤재
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.236-246
    • /
    • 1996
  • The deployment process of fully folded airbag is analyzed. The methodology of finite element modeling is presented for flat driver side airbag and 3-dimensional passenger side airbag. 'Initial metric option' is used to model 3-dimensional passenger side airbag before deployment. The deformed shapeds and pressure waveforms inside cushion evaluated from simulation are compared to the test results. The agreements between the simulation and the experiments are satisfactory, and the results of simulation are confirmed to be applied to the design of airbag module.

  • PDF

에어백 설계를 위한 비정상자세 조건의 시험과 평가 (Evaluation and Testing of out of Position for Airbag Design)

  • 전상기;이현중;박경진
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.108-117
    • /
    • 2003
  • Development of advanced restraint system challenges both restraint and automobile manufacturers to come up with proper airbag design to reduce occupant out-of-position related injury. The important component of the advanced restraint system is the multi stage inflator. The multi stage inflator can independently control two or more airbag inflation stages to maximize occupant protection. The objective of this research is to develop relationship between airbag inflation characteristics, the occupant positions and the airbag design variables. The tests are conducted using five kinds of inflators, two kinds of airbag cushion folding methods and two kinds of tear lines. In the case of inflator, the out-of-position tests are performed with a traditional inflator, a depowered inflator and a dual stage inflator. And the efficiency and injury mechanism are evaluated by analyzing the injury pulses and values. Using this relationship, airbag design guideline is established for airbag aggressivity thresholds and the risk of injury is identified according to occupant positions.

철도차량 접촉사고자 보호 에어백 개발연구 (Development and Feasible Study of Train to Pedestrian Protection Airbag)

  • 유완동;함정식;조규상
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.82-91
    • /
    • 2012
  • This paper deals with the development and feasible study of the train to pedestrian protection airbag. The concept of the airbag system is to protect the pedestrian like as workers on railroad. The airbag system includes cushions, gas generators, a housing, sliding fixture, anti-bouncing airbag, and a leg protection bumper. Those things were designed and fabricated. The performance of the airbag system was evaluated in the sense of the static deployment test, drop test, dynamic motion test and field(train level) test. The deployment logic, TTF(Time to fire), and the inner pressure of the cushion were also investigated for the airbag.

Shape and Orifice Optimization of Airbag Systems for UAV Parachute Landing

  • Alizadeh, Masoud;Sedaghat, Ahmad;Kargar, Ebrahim
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권3호
    • /
    • pp.335-343
    • /
    • 2014
  • An airbag is an important safety system and is well known as a safety system in cars during an accident. Airbag systems are also used as a shock absorber for UAVs to assist with rapid parachute landings. In this paper, the dynamics and gas dynamics of five airbag shapes, cylindrical, semi-cylindrical, cubic, and two truncated pyramids, were modelled and simulated under conditions of impact acceleration lower than $4m/s^2$ to avoid damage to the UAV. First, the responses of the present modelling were compared and validated against airbag test results under the same conditions. Second, for each airbag shape under the same conditions, the responses in terms of pressure, acceleration, and emerging velocity were investigated. Third, the performance of a pressure relief valve is compared with a fixed-area orifice implemented in the air bag. For each airbag shape under the same conditions, the optimum area of the fixed orifice was determined. By examining the response of pressure and acceleration of the airbag, the optimum shape of the airbag and the venting system is suggested.

자전거 탑승자용 웨어러블 에어백의 팽창성능 해석 및 시험에 관한 연구 (A Study on Inflation Performance Analysis and Test of A Wearable Airbag for Bikers)

  • 김현식;변기식;백운경
    • 한국안전학회지
    • /
    • 제34권2호
    • /
    • pp.22-27
    • /
    • 2019
  • Bikers can be subjected to accidents during their bicycling. Helmets are only good, if any, for their head protection. A wearable airbag can protect the human neck area if it is properly designed. This airbag system is composed of an inflater and an airbag. The inflater contains a pressurized gas cylinder and a piercing device. The airbag is an inflatable fabric surrounding the human neck. When a bicycle accident happens, a sensor captures the motion of the biker and a microcomputer sends a signal to open a valve in the inflator to supply the pressurized gas to the airbag. An important issue of this system is that the airbag should be quickly inflated to protect the human neck. This paper deals with the airbag inflation time simulation and some issues to design a wearable airbag system. Also, a prototype was tested to show its feasibility using a human dummy mounted on a running cart.

자동차 에어백 동작시점 결정 알고리듬 (An Algorithm for Airbag Triggering Time Decision)

  • 이재강;김일환
    • 산업기술연구
    • /
    • 제18권
    • /
    • pp.309-316
    • /
    • 1998
  • The airbag system for automobile is one of the most important passenger protect system. And it is very important whether to inflate or not, and when the airbag will be inflated. This paper focuses on how to find airbag triggering time after the automobile is crashed. In this paper we present an algorithm for airbag triggering time decision and compare the triggering time with the time by the other algorithm.

  • PDF

승객 상해치 감소를 위한 측면 에어백의 역할 (Role of Side Impact Airbag in Order to Reduce Passenger Injury Value)

  • 김동석;이명식
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.142-151
    • /
    • 1997
  • In order to reduce passenger injuries in side collisions, car makers are developing a side impact airbag system while Volvo has already adopted. This study examines dummy injury reduction effect of a side airbag system using full car side impact simulation according to FMVSS 214 test procedure. The simulation result without side airbag shows a good correlation with test data. The folded airbag simulation is carried out to check main design factors. Through the simulation with side airbag module integrated in the seat frame, it is found that the side airbag system provides a substantially enhanced protection for car occupants in side collisions.

  • PDF

실험계획법을 이용한 측면 에어백 인플레이터 최적 설계 (Optimizing Design of Side Airbag Inflator using DOE Method)

  • 김병우;허진
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1189-1195
    • /
    • 2011
  • For side airbag, the pipe type inflators have been wide used while the disk type inflators have been used for front airbag. For helping to prevent injury and death the airbag inflator system should be design with great care. The present study deal with optimizing the design of side airbag inflator by finite element analysis and design of experiment method. An optimization process was integrated to determine the optimum design variable values related to the side airbag inflator. Free shape optimization method has been carried out to find a optimal shape on an side airbag inflator model. Optimization of the air bag inflator was successfully developed using Sharpe optimization was carried out to find a new geometry. The improved results compared to the base design specification were achieved from design of experiment and optimization.

직교배열표를 이용한 승용차 에어백의 설계 (An Airbag Design for the Safety of an Occupant using the Orthogonal Array)

  • 박영선;이주영;박경진
    • 한국자동차공학회논문집
    • /
    • 제3권2호
    • /
    • pp.62-76
    • /
    • 1995
  • The safety analysis becomes very essential in the crash environment with the growth of automobile industry. Recently, an airbag system is required to protect the occupant. The effects of an airbag can be evaluated exactly from the barrier or sled test which is quite expensive. The airbag system in a passenger car is analyzed with the occupant analysis program. The modeling of the passenger car including an airbag is established and the results are verified by comparisons with real crash tests. However, the solution of an airbag design can not be obtained easily with the conventional method such as an optimization due to the nonlinearity and complexity of the problem. An iterative design algorithm using the orthogonal array is proposed to overcome the difficulties. The design trend of an airbag is recommended to minimize the injury of an occupant with the proposed design algorithm and the results are discussed.

  • PDF