• Title/Summary/Keyword: air-washer

Search Result 30, Processing Time 0.025 seconds

Numerical Analysis on Energy Reduction of an Exhaust-Air-Heat-Recovery Type Air Washer System for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 배기 열회수식 에어와셔 시스템의 에너지절감에 관한 수치해석)

  • Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Son, Seung-Woo;Shin, Dae-Kun;Kim, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.10
    • /
    • pp.697-703
    • /
    • 2010
  • In recent semiconductor manufacturing clean rooms, air washers are used to remove airborne gaseous contaminants from the outdoor air introduced into a clean room. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery is useful for reducing the outdoor air conditioning load required to maintain a clean room. Therefore it is desirable to recover heat from the exhaust air and use it to cool or heat the outdoor air. In the present study, numerical analysis was conducted to evaluate the recovered heat of an exhaust air heat recovery type air washer system, which is the key part of an energy saving outdoor air conditioning system for semiconductor clean rooms. The present numerical results showed relatively good agreement with the available experimental data.

An Experiment on Performance Evaluation of Energy Consumption of an Exhaust Air Heat Recovery Type Air Washer for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 배기 열회수식 에어와셔의 에너지 소비량 성능평가 실험)

  • Song, Gen-Soo;Yoo, Kyung-Hoon;Shin, Dae-Kun;Son, Seung-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.844-849
    • /
    • 2008
  • In recent semiconductor manufacturing clean rooms, in order to improve clean room air quality, air washers are used to remove airborne gaseous contaminants such as $NH_3$, SOx and organic gases from outdoor air introduced into clean room. Meanwhile, there is a large quantity of exhaust air from clean room. From the energy saving point of view, heat recovery is useful for the reduction of air conditioning energy consumption for clean room. Therefore it is desirable to recover heat from the exhaust air and use it to reheat the outdoor air. However, so far there have not been sufficient studies of analyzing the comparison of the amounts of energy consumption and saving. In the present study, an experiment was conducted to investigate the energy consumption and heat recovery of a fin-coil type air washer system for semiconductor manufacturing clean rooms.

  • PDF

Gas removal efficiency of air washer system according to pH of sprayed water (분무수 pH 변화에 따른 에어와셔의 가스제거 성능변화)

  • Nam, Seung-Baeg;Ha, Jong-Pil;Kim, Tae-Hyung;Moon, In-Ho;Cho, In-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.488-492
    • /
    • 2007
  • In this study, experiment was done to verify the relationship between sprayed water's pH and gas removal efficiency of the Air Washer system. The experiment was done with sprayed water's pH in between pH 4.7 to 7.7, and Ion Chromatography analysis was used to identify the system's gas removal efficiency. As a result, $NH_3$ is removal efficiency decreased under 50% above pH 7, and $SO_X$ and $NO_X$ removal efficiency decreased under pH 6. Through this research, the optimum pH operating condition of the Air Washer System was conformed to be in range between pH6 to pH6.5.

  • PDF

Heat transfer characteristics with materials of the filler and flow path in vehicle washer heater system (차량워셔액 가열시스템에서 충전재 및 유로의 재질에 따른 열전달 특성 연구)

  • Cha, Woo Sub;Kim, Tae Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.2628-2634
    • /
    • 2014
  • Vehicle washer heater system is more widely adopted to defrost a window or to clear the windshield glass in winter season. The washer heater system should be designed to heat up washer fluid rapidly to the target temperature for only a short time. A numerical analysis has been carried out to analyze the heat transfer characteristics with materials of inside parts in vehicle washer heater system with filler and flow path. ANSYS - FLUENT software is employed for the analysis. The axial symmetry model is three-dimensional and unsteady. It applies to the coupled method which is one of pressure based. Through this result, it was obtained to find the optimal material condition for the filler and flow path in washer system. For material of filler, the air with lower density was heated more rapidly rather than silicon carbide(SiC). For material of flow path, copper with the heat transfer coefficient of approximately four times greater than the nickel gives us higher efficiency. That is the reason why the heating time of methanol was reduced to make uniform temperature in washer heater system.

Optimal Design of Air Dampers Applied on Wash Mechines (공기감쇠기의 최적설계와 세탁기에의 응용)

  • 양보석;이재무;하종훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2477-2485
    • /
    • 1994
  • Air damper has a great advantage that is independent of temperature change. This paper presents an analysis approach and an application for designing nonviscous air damper with a piston and a cylinder. The objective functions for optimum design is damping coefficient and is maximized by changing two design variables that are length between piston and cylinder and orifice diameter. A digital computer program was developed which determines optimal air damper configuration for maximum damping coefficients. The results were applied to the automatic washer and are confirmed to be valid for the range of operating conditions.

Numerical Analysis on Energy Consumption of an Exhaust Air Heat Recovery Type Outdoor Air Conditioning System for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 배기 열회수식 외기공조시스템의 에너지소비 수치해석)

  • Song, Gen-Soo;Yoo, Kyung-Hoon;Kim, Hyoung-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1306-1311
    • /
    • 2009
  • In recent semiconductor manufacturing clean rooms, in order to improve clean room air quality, air washers are used to remove airborne gaseous contaminants such as $NH_3$, SOx and organic gases from the outdoor air introduced into clean room. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery is therefore useful for reducing the outdoor air conditioning load for a clean room. Therefore it is desirable to recover heat from the exhaust air and use it to reheat the outdoor air. In the present study, numerical analysis and experiment was conducted to simulate the amount of energy reduction of exhaust air heat recovery type air washer system. The present numerical results showed good agreement with the results of the experimental data.

  • PDF

A Study on the Recycling of Agricultural Films by Air Washing (공기세척에 의한 농업용 폐필름의 재활용 연구)

  • Kim, R. K.;Kang, M.;Lee, J. M.;Yoon, T. H.
    • Resources Recycling
    • /
    • v.8 no.3
    • /
    • pp.3-8
    • /
    • 1999
  • An air-washer was developed in order to remove the soil on the films collected from agricultural use, The washed films were subjected to TGA analysis to measure the residual soil content and DSC analysis to evaluate composition as well as compositional ratro, Mechanical properties of washed films were measured via tensile test ,md the properties of washed films were compared with those of neat resin blend. Major component of air washed films was polyethylene, and compositional ratio was 10:6:3:1 (HDPE:LLDPE:LDPE:EVA). 30 min air-washed films showed 2.1 % of residual soil content, while the water washed films had 1.5%. Tensile properties of washed (air and water) films were almost same as those of neat resin mixture.

  • PDF

Development of Air-jet Washer for the Agaricus Bisporus (공기분사에 의한 양송이 버섯 세척기 개발)

  • Park, H.M.;Cho, K.H.;Hong, S.G.;Lee, S.H.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2009
  • This study was conducted to develop an agaricus bisporus washing machine which uses compressed air to remove foreign materials attached on the surface of agaricus bisporus. A prototype of the washing machine was constructed, and performance of removing foreign materials was tested. Research results are as follows: 1. Several transferring methods including PE roller rotation, brush roller rotation, PE screw rotation, vibration plate, and belt conveyor were evaluated. Roller, screw, and vibration methods caused damages on the surface of the products, but belt conveyor method caused the least damages. 2. For air jet, a stationary nozzle type and a rotational type were evaluated. The best air jet nozzle was the jet-type nozzle, and the rotational type was more effective than stationary type nozzle. 3. With the conveyer belt, box type moving method and the rotational air jet nozzle, the washing machine showed the best performance when higher than 5.4${\times}$105 Pa of air jet pressure and lower than 0.047 m/s of moving speed was used. Working performance of the system was 650 kg/h, and the damaging rate was 1.2 %.

A Study on a High-Temperature/High-Pressure Washing System in which High-Temperature Water is Generated in a Low-Pressure Boiler and High-Pressure Water is Generated Thereafter in a Compressor (저압보일러에서 고온의 온수 생성 후 압축기에서 고압수를 생성하는 고온·고압 세척시스템에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.94-100
    • /
    • 2019
  • This study was conducted on a high-temperature/high-pressure washer in which low-pressure cold water in a boiler is heated to a temperature range of $70{\sim}80^{\circ}C$ by supplying diesel combustion heat. The high-temperature water is sent to a compressor to increase its pressure to 200 bar, thereby making high-temperature/high-pressure water, which is sprayed through a spray nozzle. In the results of this study, the spray temperature of the high-pressure washing was shown to be the highest when the ratio between the actual amount of combustible air and the theoretical amount of air was 1:1 and the energy consumption rate of the low-pressure boiler type high-pressure washer was shown to be much lower than that of the high-pressure boiler type high-pressure washer.