• Title/Summary/Keyword: air-methane flame

Search Result 195, Processing Time 0.02 seconds

A Chemical Reactor Modeling for Prediction of NO Formation of Methane-Air Lean Premixed Combustion in Jet Stirred Reactor (제트 혼합 반응기 내 희박 예혼합 메탄-공기 연소의 NO 생성 예측을 위한 화학 반응기 모델링)

  • Lee, Bo-Rahm;Park, Jung-Kyu;Lee, Do-Yong;Lee, Min-Chul;Park, Won-Shik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.365-373
    • /
    • 2010
  • A chemical reactor model (CRM) was developed for a jet stirred reactor (JSR) to predict the emission of exhaust such as NOx. In this study, a two-PSR model was chosen as the chemical reactor model for the JSR. The predictions of NO formation in lean premixed methane-air combustion in the JSR were carried out by using CHEMKIN and GRI 3.0 methane-air combustion mechanism which include the four NO formation mechanisms. The calculated results were compared with Rutar's experimental data for the validation of the model. The effects of important parameters on NO formation and the contributions of the four NO pathways were investigated. In the flame region, the major pathway is the prompt mechanism, and in the post flame region, the major pathway is the Zelodovich mechanism. Under the lean premixed condition, the N2O mechanism is the important pathway in both flame and postflame regions.

CO, $CO_2$ and NOx Emission Characteristics of Methane-Air Premixed Flame in Constant Volume Combustion Chamber (정적연소실에서 메탄-공기 예혼합화염의 CO, $CO_2$ 및 NOx 배출 특성)

  • 김태권;김성훈;장준영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.19-26
    • /
    • 2000
  • This paper presents the effects of initial pressure of mixture on CO, $CO_2$ and NOx emissions in constant volume combustion chamber. The CO, $CO_2,O_2,N_2$ concentrations in the chamber are determined by thermal conductivity detection (Gas-chromatograph) wile the NOx concentration is measured by chemiluminescent detection (NOx Analyser). Methane-air mixture is used as premixed fuel and the measurements are taken with equivalence ratios($\phi$) varing from 0.6 to 1.3, and initial pressures of methane-air mixture varing from 0.1MPa to 0.8MPa in constant volume combustion chamber. The NOx concentration steadily increases with increasing equivalence ratio, peaks in lean flame ($\phi$=0.85~0.9), and then rapidly decreases. However, as the initial pressure of mixture is increased, the equivalence ratio corresponding to the point of peak [NOx] shifts towards leaner conditions. This is caused by a similar shift in the peak [CH], which is caused by the variation with pressure and equivalence ratio of the rate of CH production from $CH_2$ and OH. The maximum combustion pressure peaks at $\phi$ =1.05 and the $CO_2$ concentration peaks at $\phi$=0.95~1.0 while the CO concentration rises sharply at the condition of fuel-rich mixtures. This is caused by complete combustion at $\phi$=0.95.

  • PDF

A Numerical Study on the Lean-Rich Interaction of Methane/Air Flames (희박-과농 메탄 화염의 상호작용에 관한 수치해석적 연구)

  • Lee, Seung-Dong;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.377-383
    • /
    • 1996
  • Interaction of flames in a lean-rich concentration field is studied numerically adopting a counterflow as a model problem. Detailed kinetic mechanism is adopted in analyzing the structure of various type of flames which can be found in lean-rich interaction. Flow field is simplified to quasi one-dimensional by using boundary layer approximation and similarity formulation. Triple flames are identified and its structure shows that a diffusion flame is located in the middle of two premixed flames. Such a diffusion flame is formed by $H_2$ and CO generated from the rich premixed flame and $O_2$ leaked from the lean premixed flame. The flame position can be identified either from the hydrogen production rate or the heat release rate. Transition from single diffusion flame to triple flame is observed as degree of premixing is increased.

A Study on Downstream Interaction between Methane-air and Syngas-air Premixed Flames (메탄-공기/합성가스-공기 예혼합화염의 후류 상호 작용에 대한 연구)

  • Park, Jeong;Kwon, Oh Boong;Keel, Sang-In;Yun, Jin-Han
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.8-17
    • /
    • 2016
  • Downstream interactions between lean premixed flames with mutually different fuels of syngas and $CH_4$ have been numerically investigated particularly on and near lean extinction limits. The interaction characteristics between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames were shown to be quite different from those between the same hydrocarbon flames. The lean extinction boundaries were of slanted shape, thereby implying strong interactions. The weaker flames had negative flame speeds on the upper extinction boundaries, whereas the weaker flame speeds on the lower extinction boundaries were both negative and positive. The results also showed that the flame interaction characteristics did not follow the general tendency with the dependency of Lewis number in downstream interactions between the same hydrocarbon flames. Importance of chemical interaction in flame characteristics is discussed in the downstream interactions between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames.

Characteristics of Preheated Air Combustion in a Laminar Premixed Flame (층류 예혼합 화염의 예열공기 연소특성)

  • Lee, Jong-Ho;Lee, Seung-Young;Hahn, Jae-Won;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1039-1046
    • /
    • 2002
  • Co-flow axisymmetric laminar premixed flame of methane was used to study the influence of air temperature and $N_2$ addition on the flame structure, temperature field and emission characteristics. OH 2-D images and temperatures along the centerline were measured experimentally by PLIF and CARS techniques respectively to observe the influences of dilution and thermal effects of $N_2$ in the gas mixture. Also, the concentration of NOx was measured at each condition by gas analyser to see the suppression effect of N2 addition on NOx emissions. It was found that OH concentrations distribute widely as air temperature goes higher, while the effect of $N_2$ addition is not significant. But $N_2$ addition highly contributes to the flame front and NOx emissions which was argued to be due to the reduction of flame temperature. In accordance with experimental study, numerical simulation using CHEMKlN code was carried out to compare the temperature results with those acquired by CARS measurement, and we could find that there is good agreement between those results.

A Study on Laminar Lifted Jet Flames for Diluted Methane in Co-flow Air

  • Sapkal, Narayan P.;Lee, Won June;Park, Jeong;Kwon, Oh Boong
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • The laminar lifted jet flames for methane diluted with helium and nitrogen in co-flow air have been investigated experimentally. Such jet flames could be lifted in both buoyancy-dominated and jet momentum dominated regimes (even at nozzle exit velocities much higher than stoichiometric laminar flame speed) despite the Schmidt number less than unity. Chemiluminescence intensities of $OH^*$ radical (good indicators of heat release rate) and the radius of curvature for tri-brachial flame were measured using an intensified charge coupled device (ICCD) camera and digital video camera at various conditions. It was shown that, an increase in $OH^*$ concentration causes increase of edge flame speed via enhanced chemical reaction in buoyancy dominated regime. In jet momentum dominated regime, an increase in radius of curvature in addition to the increased $OH^*$ concentration stabilizes such lifted flames. Stabilization of such lifted flames is discussed based on the stabilization mechanism.

Laminar Burning Velocities and Flame Stability Analysis of Hydrocarbon/Hydrogen/Carbon Monoxide-air Premixed Flames (탄화수소/수소/일산화탄소-공기의 예혼합화염에서 층류화염전파속도와 화염안정성)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.2
    • /
    • pp.23-32
    • /
    • 2011
  • To investigate cell formation in hydrocarbon/hydrogen/carbon monoxide-air premixed flames, the outward propagation and cellular instabilities were experimentally studied in a constant pressure combustion chamber at room temperature and elevated pressures. Unstretched laminar burning velocities and Markstein lengths of the mixtures were obtained by analyzing high-speed schlieren images. In this study, hydrodynamic and diffusional- thermal instabilities were evaluated to examine their effects on flame instabilities. The experimentally-measured unstretched laminar burning velocities were compared to numerical predictions using the PREMIX code. Effective Lewis numbers of premixed flames with methane addition decreased for all of the cases; meanwhile, effective Lewis numbers with propane addition increased for lean and stoichiometric conditions and increased for rich and stoichiometric cases for hydrogen-enriched flames. With the addition of propane, the propensity for cell formation significantly was diminished, whereas cellular instabilities for hydrogen-enriched flames were promoted. However, similar behavior of cellularity was obtained with the addition of methane to the reactant mixtures.

Numerical Analysis of the Extinction and $NO_x$ Emission in Methane/Air Premixed Flame by Hydrogen Addition (메탄/공기 예혼합화염에서의 수소첨가에 의한 소염 및 $NO_x$ 발생특성에 관한 수치해석)

  • Cho, Eun-Seong;Chung, Suk-Ho;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.75-81
    • /
    • 2006
  • Lean premixed combustion is a well known method for low $NO_x$ gas turbine combustor. But lean combustion is usually accompanied by flame instability. To overcome this problem, the hydrogen ($H_2$) was added to main fuel methane to increase flammable limit. In this paper, the effects of hydrogen addition on lean premixed combustion of methane ($CH_4$) were investigated numerically. Results showed that the extinction stretch rate increases and the extinction temperature constant with relatively small amount of $H_2$ addition. The flame temperature and NO emission increase with $H_2$ addition at the same stretch rate and equivalence ratio but it could increase the range of lean extinction and extinction equivalence ratio limit. Eventually, the $H_2$ addition case showed almost same or lower NO emission than no addictive $CH_4$ case in the extinction condition.

Combustion and Radiation Characteristics of Oxygen-Enhanced Inverse Diffusion Flame

  • Hwang, Sang-Soon;Gore, Jay-P
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1156-1165
    • /
    • 2002
  • The characteristics of combustion and radiation heat transfer of an oxygen-enhanced diffusion flame was experimentally analyzed. An infrared radiation heat flux gauge was used to measure the thermal radiation of various types of flames with fuel, air and pure oxygen. And the Laser Induced Incandescence (LII) technique was applied to characterize the soot concentrations which mainly contribute to the continuum radiation from flame. The results show that an oxygen-enhanced inverse diffusion flame is very effective in increasing the thermal radiation compared to normal oxygen diffusion flame. This seems to be caused by overlapped heat release rate of double flame sheets formed in inverse flame and generation of higher intermediate soot in fuel rich zone of oxygen-fuel interface, which is desirable to increase continuum radiation. And the oxygen/methane reaction at slight fuel rich condition (ø=2) in oxygen-enhanced inverse flame was found to be more effective to generate the soot with moderate oxygen availability.

A numerical study on the characteristics of flame propagation in small tubes under various boundary conditions (벽면조건에 의한 미소관내 화염 전파 특성 변화에 관한 수치해석)

  • Kim, Nam-Il;Maruta, Kaoru
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.32-38
    • /
    • 2006
  • A premixed flame propagating in a tube suffers strong variation in its shape and structure depending on boundary conditions. The effects of thermal boundary conditions and flow fields on flame propagation are numerically investigated. Navier-Stokes equations and species equations are solved with a one-step irreversible global reaction model of methane-air mixture. Finite volume method using an adaptive grid method is applied to investigate the flame structure. In the case of an adiabatic wall, friction force on the wall significantly affected the flame structure while in the case of an isothermal wall, local quenching near the wall dominated flame shapes and propagation. In both cases, variations of flow fields occurred not only in the near field of the flame but also within the flame itself, which affected propagation velocities. This study provides an overview of the characteristics of flames in small tubes at a steady state.

  • PDF