• Title/Summary/Keyword: air writing

Search Result 20, Processing Time 0.031 seconds

Selection of features and hidden Markov model parameters for English word recognition from Leap Motion air-writing trajectories

  • Deval Verma;Himanshu Agarwal;Amrish Kumar Aggarwal
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.250-262
    • /
    • 2024
  • Air-writing recognition is relevant in areas such as natural human-computer interaction, augmented reality, and virtual reality. A trajectory is the most natural way to represent air writing. We analyze the recognition accuracy of words written in air considering five features, namely, writing direction, curvature, trajectory, orthocenter, and ellipsoid, as well as different parameters of a hidden Markov model classifier. Experiments were performed on two representative datasets, whose sample trajectories were collected using a Leap Motion Controller from a fingertip performing air writing. Dataset D1 contains 840 English words from 21 classes, and dataset D2 contains 1600 English words from 40 classes. A genetic algorithm was combined with a hidden Markov model classifier to obtain the best subset of features. Combination ftrajectory, orthocenter, writing direction, curvatureg provided the best feature set, achieving recognition accuracies on datasets D1 and D2 of 98.81% and 83.58%, respectively.

Performance Analysis of Free-Style Writing and Drawing using Ultrasonic Position System

  • Shin, Low-Kok;Park, Soo-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.6-9
    • /
    • 2008
  • In future domestic context aware applications the location of mobile devices is often required. Ultrasonic technology enables high resolution indoor position measurements. A disadvantage of state-of-art ultrasonic systems is that several base stations are required to estimate 3D position. This study aims to evaluate the efficiency and effectiveness of using UPS as a 3D free-hand writing or drawing tool. The processes include the design and testing of UPS as an efficient 3D free-hand writing or drawing tool in the air. The paper will further explain the system architecture of the UPS and how to use GPS as 3D free-hand writing or drawing tool. The efficiency and effectiveness of the system was confirmed by a computer software simulation. The software will further display the result of drawing or writing from the user by graphics. As a result, it is possible to implement UPS as a 3D free-hand writing or drawing tool in the air.

A Study on a 3D Free-Hand using Ultrasonic Position System

  • Shin Low-Kok;Park Soo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.451-454
    • /
    • 2006
  • Ultrasonic Positioning System (UPS) is an absolute positioning system using ultrasonic waves and has better performance in low price than the other absolute positioning systems. UPS can be further used as pseudo-satellites in the place where GPS is not available. This study aims to evaluate the efficiency and effectiveness of using UPS as a 3D free-hand writing or drawing tool. The process includes the design and testing of VPS as an efficient 3D free-hand writing or drawing tool in the air. The paper will further explain the system architecture of the UPS and how to use GPS as 3D free-hand writing or drawing tool. The efficiency and effectiveness of the system was confirmed by a computer software simulation. The software will further display the result of drawing or writing from the user by graphics. As a result, it is possible to implement UPS as a 3D free-hand writing or drawing tool in the air.

  • PDF

Magnetization Distribution in Thin-Film Magnetic Head

  • Shin, Kyung-Ho;Shalyguina, E.E.;Lee, J.H;Rhie, K.
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.55-58
    • /
    • 2000
  • Local magnetic properties and magnetization distributions on the air-bearing surface of a thin-film magnetic head have been studied by using scanning magneto-optical Kerr microscopy. The examined head was a merged MR read/inductive writing head with a write gap equal to 0.3 $\mu m$. Sizes of top and bottom pole-tips on the air-bearing surface of the writing head were equal to $3\mu m\times3\mu m$ and $3\mu m\times30\mu m$, respectively, The measured magnetic characteristics on the head air-bearing surface were found to be very sensitive to the head design. In particular, magnetization distributions were discovered to have asymmetrical shape. Maximum magnitudes of the magnetization were located near the shorten pole-tip. So, it was experimentally proved that more magnetic flux emanates just from this part of the air-bearing head surface.

  • PDF

Object Detection and Optical Character Recognition for Mobile-based Air Writing (모바일 기반 Air Writing을 위한 객체 탐지 및 광학 문자 인식 방법)

  • Kim, Tae-Il;Ko, Young-Jin;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.53-63
    • /
    • 2019
  • To provide a hand gesture interface through deep learning in mobile environments, research on the light-weighting of networks is essential for high recognition rates while at the same time preventing degradation of execution speed. This paper proposes a method of real-time recognition of written characters in the air using a finger on mobile devices through the light-weighting of deep-learning model. Based on the SSD (Single Shot Detector), which is an object detection model that utilizes MobileNet as a feature extractor, it detects index finger and generates a result text image by following fingertip path. Then, the image is sent to the server to recognize the characters based on the learned OCR model. To verify our method, 12 users tested 1,000 words using a GALAXY S10+ and recognized their finger with an average accuracy of 88.6%, indicating that recognized text was printed within 124 ms and could be used in real-time. Results of this research can be used to send simple text messages, memos, and air signatures using a finger in mobile environments.

Direct-Write Fabrication of Solid Oxide Fuel Cell by Robo-Dispensing (로보 디스펜싱을 이용하여 직접묘화방식으로 제조된 고출력 소형 고체산화물 연료전지)

  • Kim, Yong-Bum;Moon, Jooho;Kim, Joosun;Lee, Jong-Ho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.425-431
    • /
    • 2005
  • Line Shaped Solid Oxide Fuel Cell (SOFC) with multilayered structure has been fabricated via direct-writing process. The cell is electrolyte of Ni-YSZ cermet anode, YSZ electrolyte and LSM cathode. They were processed into pastes for the direct writing process. Syringe filled with each electrode and electrolyte paste was loaded into the computer-controlled robe-dispensing machine and the paste was dispensed through cylindrical nozzle of 0.21 mm in diameter under the air pressure of 0.1 tow onto a moving plate with 1.22 mm/s. First of all, the anode paste was dispensed on the PSZ porous substrate, and then the electrolyte paste was dispensed. The anode/electrolyte and the PSZ substrate were co-fired at $1350^{\circ}C$ in air atmosphere for 3 h. The cathode layer was similarly dispensed and sintered at $1200^{\circ}C$ for 1 h. All the electrode/electrolyte lines were visually aligned during the direct writing process. The effective reaction area of fabricated SOFC was $0.03 cm^2$, and the thickness of anode, electrolyte and cathode was 20 $\mu$m, 15 $\mu$m, and 10 $\mu$m, respectively. The single line-shaped SOFC fabricated by direct-writing process exhibited OCV of 0.95 V and maximum power density of $0.35W/cm^2$ at $810^{\circ}C$.

Analysis of Scientific Explanations and the Affordances Constructed in Gifted Elementary Students' Science Drawings and Science Writings about Air Pressure: Pedagogical Use of Multimodal Representations (공기 압력에 대한 초등영재 학생들의 과학그리기 및 과학글쓰기에서 구성된 과학적 설명과 어포던스 분석 - 다중모드적 표상의 교육적 활용 -)

  • Chang, Jina;Park, Joonhyeong;Park, Jisun
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.1
    • /
    • pp.161-177
    • /
    • 2023
  • Scientific explanation is composed of various representations such as texts, diagrams, and graphs, and each representation contributes to expanding scientific meaning by connecting similar but slightly different meanings as a 'mode'. Based on this perspective of social semiotics, we aimed to identify the characteristics of meaning formation demonstrated in students' science writing (verbal mode) and science drawing (visual mode) and to discuss the pedagogical use of multimodal representations. To that end, 18 science drawings and 18 scientific writings constructed by science-gifted elementary students on air pressure were collected. The characteristics of the drawn and written explanations were then analyzed from the affordance perspective in social semiotics. In science drawing, students showed a tendency to use the affordance of the visual mode to infer concrete changes from the particle view, such as the movement of air particles, the number of air particles, and the collision of particles. In science writing, students used the affordance of the verbal mode mainly to infer the causal relationship between the concept of air pressure and other related factors at an abstract level. Based on those results, we discuss the educational implications and provide concrete examples of how to use the unique affordances of each form to complement one another.

Fingertip Detection through Atrous Convolution and Grad-CAM (Atrous Convolution과 Grad-CAM을 통한 손 끝 탐지)

  • Noh, Dae-Cheol;Kim, Tae-Young
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.5
    • /
    • pp.11-20
    • /
    • 2019
  • With the development of deep learning technology, research is being actively carried out on user-friendly interfaces that are suitable for use in virtual reality or augmented reality applications. To support the interface using the user's hands, this paper proposes a deep learning-based fingertip detection method to enable the tracking of fingertip coordinates to select virtual objects, or to write or draw in the air. After cutting the approximate part of the corresponding fingertip object from the input image with the Grad-CAM, and perform the convolution neural network with Atrous Convolution for the cut image to detect fingertip location. This method is simpler and easier to implement than existing object detection algorithms without requiring a pre-processing for annotating objects. To verify this method we implemented an air writing application and showed that the recognition rate of 81% and the speed of 76 ms were able to write smoothly without delay in the air, making it possible to utilize the application in real time.

A Study on the Writing Methods for Greenhouse Gas and Energy Consumption Report (온실가스·에너지 절약보고서 작성방안에 관한 연구)

  • Lee, Je-Myo;Tho, Hyunsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.486-490
    • /
    • 2014
  • In our country, which imports 97% of the energy consumed, an energy saving policy is required. The price inflation of utility bills is caused by a steep rise in the prices of imported oil. This study aims to solve the difficulties that cause poor environmental conditions for workers in the energy services sector, and especially, to systematize energy consumption reports to manage energy goals by suggesting an example of written energy-saving reports. To this end, this research focuses on energy consumption of target facilities including office spaces in a main building and multi-use facilities of an office building. A system where all employees can participate is structured through the analysis of energy usage in the target buildings.

Comparison of Electromyography Activity in Accordance with Contact Pad Type during the Use of a Standing Table for Pediatric Patients with Brain Lesions (뇌병변 소아환자의 기립보조기 사용 시 접촉 패드 유형에 따른 근활성도 비교)

  • Lee, J.H.;Oh, M.W.;Ha, J.G.;Seo, J.Y.;Hwang, H.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.161-168
    • /
    • 2014
  • This study conducted a comparative analysis of the contraction pattern of trunk and lower limbs muscles of handicapped children with brain lesions during the use of foam pad and air pad for fixing a standing table to the body for pediatric patients with brain lesions using a standing table product applied with a pneumatic air fitting system. There was a difference in the measurement of muscle strength activity by muscle in accordance with pad type (foam pad vs. air pad). A large difference was found with big movements (movements of eating), while a small difference was discovered with small movements (writing and reading movements). This was found to furnish a little more comfort to users compared with the existing foam pad during the use of a standing table product applied with a pneumatic air fitting system.

  • PDF