DOI QR코드

DOI QR Code

Analysis of Scientific Explanations and the Affordances Constructed in Gifted Elementary Students' Science Drawings and Science Writings about Air Pressure: Pedagogical Use of Multimodal Representations

공기 압력에 대한 초등영재 학생들의 과학그리기 및 과학글쓰기에서 구성된 과학적 설명과 어포던스 분석 - 다중모드적 표상의 교육적 활용 -

  • Chang, Jina (National Institute of Education, Nanyang Technological University) ;
  • Park, Joonhyeong (National Institute of Education, Nanyang Technological University) ;
  • Park, Jisun (Ewha Womans University)
  • 장진아 (난양공과대학교 국립교육원) ;
  • 박준형 (난양공과대학교 국립교육원) ;
  • 박지선 (이화여자대학교)
  • Received : 2022.11.20
  • Accepted : 2023.02.16
  • Published : 2023.02.28

Abstract

Scientific explanation is composed of various representations such as texts, diagrams, and graphs, and each representation contributes to expanding scientific meaning by connecting similar but slightly different meanings as a 'mode'. Based on this perspective of social semiotics, we aimed to identify the characteristics of meaning formation demonstrated in students' science writing (verbal mode) and science drawing (visual mode) and to discuss the pedagogical use of multimodal representations. To that end, 18 science drawings and 18 scientific writings constructed by science-gifted elementary students on air pressure were collected. The characteristics of the drawn and written explanations were then analyzed from the affordance perspective in social semiotics. In science drawing, students showed a tendency to use the affordance of the visual mode to infer concrete changes from the particle view, such as the movement of air particles, the number of air particles, and the collision of particles. In science writing, students used the affordance of the verbal mode mainly to infer the causal relationship between the concept of air pressure and other related factors at an abstract level. Based on those results, we discuss the educational implications and provide concrete examples of how to use the unique affordances of each form to complement one another.

과학적 설명은 글, 도식, 그래프와 같이 다양한 표상들로 구성되는데, 각 표상들은 하나의 '모드'로서 비슷하나 조금씩 다른 의미들을 연결하며 과학적 의미를 확장한다. 이러한 사회기호학의 관점을 토대로, 본 연구에서는 학생들이 구성한 과학글쓰기와 과학그리기가 각각 시각적 모드와 언어적 모드의 표상으로서 지니는 의미 형성의 특징을 파악하고, 다중모드적 표상의 교육적 활용에 대해 논의하였다. 이를 위하여, 초등과학영재 학생들이 공기의 압력에 대해 구성한 과학그리기와 과학글쓰기 각 18편을 수집하고, 과학그리기와 과학글쓰기에서 구성된 설명의 특징을 어포던스 관점에서 분석하였다. 분석 결과, 과학그리기에서 학생들은 시각적 모드가 지니는 어포던스를 통해, 공기입자의 움직임, 공기입자의 수, 입자의 충돌과 같은 입자적 관점에서의 변화를 구체화하여 추론하는 경향을 보였다. 반면, 과학글쓰기에서 학생들은 언어적 모드가 지니는 어포던스를 통해, 공기 압력 개념과 다른 요인들 간의 인과적 관계를 추상적 차원에서 추론하는 경우가 많았다. 이러한 결과를 바탕으로, 각 모드가 가지는 고유한 어포던스를 상호보완적으로 활용할 수 있는 방법에 대해 구체적인 사례를 들어 논의하였다.

Keywords

References

  1. 강훈식, 성다연, 노태희(2007). 소집단 토론과 시각적 학습 양식이 그리기와 쓰기를 활용한 다중 표상 학습에 미치는 영향: 화학 개념을 중심으로. 한국과학교육학회지, 27(1), 28-36.
  2. 강훈식, 이성미, 노태희(2006). 다중 표상 학습에 적용한 그리기와 쓰기에서 시각적 정보의 형태에 따른 교수 효과. 한국과학교육학회지, 26(3), 367-375.
  3. 김희경, 김희진(2009). 유체에서 압력의 작용에 대한 대학생들의 개념. 새물리, 59(4), 329-335.
  4. 노태희, 강훈식, 성다연(2007). 그리기와 쓰기를 활용한 다중 표상 학습에서소집단 토론과 시각적 학습 양식의 영향. 한국과학교육학회지, 27(1), 28-36.
  5. 윤혜경(2018). 과학 교수 학습을 위한 시각적 표상 능력의 교육목표 분류체계 개발 및 타당화. 한국과학교육학회지, 38(2), 161-170. https://doi.org/10.14697/JKASE.2018.38.2.161
  6. 윤혜경(2019). 그림자 현상에 대한 초등학생의 시각적 표상 능력. 한국과학교육학회지, 39(2), 295-305. https://doi.org/10.14697/JKASE.2019.39.2.295
  7. 장진아(2020). 전자기 관련 실험 활동에서 초등 교사가 사용한 표상 패턴과 의미 형성 과정 분석. 초등과학교육, 39(2), 204-218.
  8. 정용재, 송진웅(2004). 전형적 인식상황(TPS) 분석을 통한 6학년 학생들의 힘의 작용에 관한 생각 조사. 한국초등과학교육학회지, 23(3), 238-250.
  9. Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198. https://doi.org/10.1016/j.learninstruc.2006.03.001
  10. Airey, J., & Linder, C. (2009). A disciplinary discourse perspective on university science learning: Achieving fluency in a critical constellation of modes. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 46(1), 27-49. https://doi.org/10.1002/tea.20265
  11. Airey, J., & Linder, C. (2017). Social semiotics in university physics education. In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple Representations in Physics Education (pp. 95-122). Cham: Springer.
  12. Chandler, D. (2002). Semiotics: the basics. (Chapter 1). New York: Routledge.
  13. Chang, J., Park, J., Tang, K. S., Treagust, D. F., & Won, M. (2020). The features of norms formed in constructing student-generated drawings to explain physics phenomena. International Journal of Science Education, 42(8), 1362-1387. https://doi.org/10.1080/09500693.2020.1762138
  14. Cromley, J. G., Du, Y., & Dane, A. P. (2020). Drawingto-learn: Does meta-analysis show differences between technology-based drawing and paper-and-pencil drawing?. Journal of Science Education and Technology, 29(2), 216-229. https://doi.org/10.1007/s10956-019-09807-6
  15. Halliday, M. A. K. (1978). Language as social semiotic: The social interpretation of language and meaning. London: Edward Arnold.
  16. Han, J., & Roth, W. (2006). Chemical inscriptions in Korean textbooks: Semiotics of macro- and microworld. Science Education, 90(2), 173-201. https://doi.org/10.1002/sce.20091
  17. Hodge, R. & Kress, G. (1988). Social Semiotics. Cambridge: Polity
  18. Kang, S., & Tversky, B. (2016). From hands to minds: Gestures promote understanding. Cognitive Research: Principles and Implications, 1(1), 1-15. https://doi.org/10.1186/s41235-016-0011-x
  19. Kim, J. H., Cho, H. R., Cho, Y. H., & Jeong, D. H. (2018). The Difference of gestures between sScientists and middle school students in scientific discourse: Focus on molecular movement and the change in state of material. Journal of The Korean Association For Science Education, 38(2), 273-291.
  20. Kim, M., & Jin, Q. (2022). Studies on visualisation in science classrooms: a systematic literature review. International Journal of Science Education, 44(17), 2613-2631. https://doi.org/10.1080/09500693.2022.2140020
  21. Kress, G. & van Leeuwen, T. (2001). Multimodal Discourse: The Modes and Media of Contemporary Communication. London: Arnold.
  22. Kress, G. (2003). Literacy in the new media age. London: Routledge.
  23. Kress, G., & van Leeuwen, T. (2006). Reading images: The grammar of visual design (2nd ed.). London: Routledge.
  24. Kress, G., Charalampos, T., Jewitt, C., & Ogborn, J. (2014). Multimodal teaching and learning. London: Continuum.
  25. Lemke, J. L. (1998a). Multiplying meaning. In J. R. Martin, J. R. Martin, & R. Veel (Eds.), Reading science: Critical and functional perspectives on discourses of science (pp. 87-113). London: Routledge.
  26. Lemke, J. L. (1998b). Teaching all the languages of science: Words, symbols, images, and actions. In Conference on science education in Barcelona. Retrieved from http://academic.brooklyn.cuny.edu/education/jlemke/papers/barcelon.htm
  27. Lemke, J. L. (1999). Typological and topological meaning in diagnostic discourse, Discourse Processes, 27(2), 173-185. https://doi.org/10.1080/01638539909545057
  28. Lemke, J. L. (2002). Travels in hypermodality. Visual communication, 1(3), 299-325. https://doi.org/10.1177/147035720200100303
  29. Lemke, J. L. (2003). Mathematics in the middle: Measure, picture, gesture, sign, and word. Educational perspectives on mathematics as semiosis: From thinking to interpreting to knowing, 1, 215-234.
  30. Muller, A., He ttmannspe rge r, R., Sche id, J., & Schnotz, W. (2017). Representational Competence, Understanding of Experiments, Phenomena and Basic Concepts in Geometrical Optics: A Representational Approach. In D. F. Tre agust, R. Duit, & H. E. Fische r (Eds.), Multiple Representations in Physics Education (pp. 209-229). Cham: Springer.
  31. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  32. Opfermann, M., Schmeck, A., & Fischer, H. E. (2017). Multiple representations in physics and science e ducation: Why should we use them?. In D. F. Treagust, R. Duit, & H. E. Fischer (Eds.), Multiple representations in physics education (pp. 1-22). Cham: Springer.
  33. Park, J., & Chang, J. (2020). A simple method for comparing the properties of gases and liquids using a decompressible container. Physics Education, 55(2), 023006.
  34. Park, J., Chang, J., Tang, K. S., Treagust, D. F., & Won, M. (2020). Sequential patterns of students' drawing in constructing scientific explanations: focusing on the interplay among three levels of pictorial representation. International Journal of Science Education, 42(5), 677-702. https://doi.org/10.1080/09500693.2020.1724351
  35. Park, J., Tang, K. S., & Chang, J. (2021). Plan-DrawEvaluate (PDE) pattern in students' collaborative drawing: Interaction between visual and verbal modes of representation. Science Education, 105(5), 1013-1045. https://doi.org/10.1002/sce.21668
  36. Prain, V., & Waldrip, B. (2006). An exploratory study of teachers' and students' use of multi-modal representations of concepts in primary science. International Journal of Science Education, 28(15), 1843-1866.
  37. Sjoberg, M., Furberg, A., & Knain, E. (2022). Undergraduate biology students' model-based reasoning in the laboratory: Exploring the role of drawings, talk, and gestures. Science Education, 107(1), 124-148. https://doi.org/10.1002/sce.21765
  38. Tang, K. S. (2020). Discourse strategies for science teaching and learning: Research and practice. London: Routledge.
  39. Tang, K. S., Delgado, C., & Moje, E. B. (2014). An integrative framework for the analysis of multiple and multimodal representations for meaning-making in science education. Science Education, 98(2), 305-326. https://doi.org/10.1002/sce.21099
  40. Tang, K. S., Jeppsson, F., Danielsson, K., & Bergh Nestlog, E. (2022). Affordances of physical objects as a material mode of representation: A social semiotics perspective of hands-on meaning-making. International Journal of Science Education, 44(2), 179-200.
  41. Tang, K. S., Won, M., & Treagust, D. (2019). Analytical framework for student-generated drawings. International Journal of Science Education, 41(16), 2296-2322.
  42. Treagust, D. F., Duit, R., & Fischer, H. E. (Eds.). (2017). Multiple representations in physics education (Vol. 10). Cham: Springer.
  43. Tsui, C. Y., & Treagust, D. F. (2013). Introduction to multiple representations: Their importance in biology and biological education. In D. F. Treagust, & C. Y., Tsui (Eds.), Multiple representations in biological education (pp. 3-18). Dordrecht: Springer.
  44. Tytler, R. (1992). Children's explanations of air pressure generated by small group activities. Research in Science Education, 22(1), 393-402. https://doi.org/10.1007/BF02356920
  45. Tytler, R. (1998). Children's conceptions of air pressure: Exploring the nature of conceptual change. International journal of science education, 20(8), 929-958. https://doi.org/10.1080/0950069980200803
  46. Tytler, R., Prain, V., Aranda, G., Ferguson, J., & Gorur, R. (2020). Drawing to reason and learn in science. Journal of Research in Science Teaching, 57(2), 209-231. https://doi.org/10.1002/tea.21590
  47. Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (2013). Constructing representations to learn in science. Boston: Sense Publishers.
  48. van Me te r, P., & Garne r, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17(4), 285-325. https://doi.org/10.1007/s10648-005-8136-3
  49. Watson, J. D., & Crick, F. H. (1953). Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 171(4356), 737-738. https://doi.org/10.1038/171737a0
  50. Wong, E. D. (1993). Self-generated analogies as a tool for constructing and evaluating explanations of scientific phenomena. Journal of Research in Science Teaching, 30(4), 367-380. https://doi.org/10.1002/tea.3660300405
  51. Yeo, J., & Gilbert, J. K. (2014). Constructing a scientific explanation-A narrative account. International Journal of Science Education, 36(11), 1902-1935.
  52. Yoon, H. G., Kim, M., & Lee, E. A. (2021). Visual representation construction for collective reasoning in elementary science classrooms. Education Sciences, 11(5), 246.