• Title/Summary/Keyword: air kerma

Search Result 67, Processing Time 0.026 seconds

Calibration of an $^{192}Ir$ Source Used for High Dose Rate RALS. (RALS에 장착한 Ir-192 선원의 강도측정에 대한 고찰)

  • Moon, Un-Chull
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.6 no.1
    • /
    • pp.56-60
    • /
    • 1994
  • In the past, brachytherapy was carried out mostly with radium or radon sources. Currently. use of artificially produced radionuclially produced radionuclides such as $^{137}Cs,\;^{192}Ir,\;^{198}Au,\;and\;^{125}I$ is rapidly increasing. Although electrons are often used as an alternative to interstitial implants, brachytherapy continues to remain an important mode of therapy, either alone or combined with external beam. The National Council on Radiation Protection and Measurements(NCRP) recommends that the strength of any ${\gamma}$ emitter should be specified directly in terms of exposure rate in air at a specified distance such as 1m. The air kerma strength is defined as the product of air kerma rate in 'free space' and the square of the disrance of the calibration point from the source center along the perpendicular bisector, i. e., $S_k=K_L{\times}L^2$. Where $S_K$ is the the air kerma strength and K is the air kerma rate at a specified distance L. (usually 1m). Recommended units for all kerma strength are ${\mu}Gym^{2}h^{-1}$.

  • PDF

Dose Comparison between Fast Low Dose C-arm CT and DSA (Fast Low Dose C-arm CT와 DSA의 선량 비교)

  • Kim, Chan-woo;Kim, Jae-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.613-618
    • /
    • 2020
  • The average dose of Fast Low Dose C-arm CT used during hepatic arterial chemoembolization was compared with the average dose of DSA, and the exposure dose was analyzed by analyzing the average dose for each test technique in the total accumulated dose. 50 patients were randomly selected at our clinic and compared with Fast Low Dose C-arm CT, DAP and Air Kerma of DSA, and the accumulation of four test techniques (DSA, Fast Low Dose C-arm CT, Roadmap, Fluoroscopy) The proportion of dose (DAP, Air Kerma) was analyzed. For statistical comparative analysis, the corresponding sample T test and ANOVA test (post hoc test: Tukey) were performed using the statistical program SPSS 20.0. Fast Low Dose C-arm CT showed statistically significantly lower average dose (DAP, Air Kerma) than DSA. Reducing the number of tests for DSA can reduce the patient's exposure to medical radiation.

Airborne HPGe spectrometer for monitoring of air dose rates and surface activities

  • Marcel Ohera;Lubomir Gryc;Irena Cespirova;Jan Helebrant;Lukas Skala
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4039-4047
    • /
    • 2023
  • This contribution describes the application of HPGe detector for the airborne quantitative analysis. The hardware of the airborne HPGe system was designed from the commercial components with only exception of the newly designed AirHPGeSpec special software to control, measure and process the data. The system was calibrated for the local air kerma rates measured on helicopter board and its conversion to the air kerma rates at 1 m above the ground was proposed. Two examples of the air kerma rates measured over the former uranium mining areas are presented and compared with the results of other airborne system on the board. This airborne HPGe system could be also used for measuring the surface activities in a radiation event. The nuclides of 131I, 132Te - 132I, 133I, 134I, 135I, 137Cs, 134Cs, 88Rb and 103Ru were selected from possible nuclear power plant emergency scenarios. The Monte Carlo simulation was used to calculate HPGe detector efficiencies for the flight altitudes from 25 to 300 m for the energies from 300 keV to 3 MeV of the nuclides in question. Also, the detection limits according to the Currie method as well as ISO 11929-2010 for selected nuclides are presented.

Quality Assurance of Air Kerma Strength for Ir-192 High Dose Rate Source (Ir-192 고선량률 선원에 대한 공기커마강도의 품질보증)

  • Kim, Jong-Eon;Yoon, Chun-Sil;Kim, Sung-Hyun
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.147-151
    • /
    • 2007
  • AAPM TG43 report has recommended to measure air kerma strength with the strength of source. Main purpose of this study is to verify the accuracy of air kerma strength provided by manufacturer. Materials for this study were MAX-4001 Electrometer, HDR 1000 Plus of the corporation of standard imaging, and 6 french bronchial Applicator with 1000 mm. we measured ionization current in 10-90 mm range from the bottom of the central axis of chamber. The reference point of calibration displayed by the maximum ionization current in the ionization current curve was measured, and air kerma strength was computed from the maximum ionization current. we acquired 50 mm distance to correspond with the maximum ionization current in the ionization current curve. Its distance has perfectly fitted to the source reference point of calibration certificate of UW-ADCL. Air kerma strength computed value has measured about 0.5% more than calibration value provided by manufacturer. Air kerma strength of calibration certificate provided by manufacturer has acquired reliable results. This study shows that considering the move error of dwell position of source and the dead space length in well-type chamber is a good way to get an accurate result.

  • PDF

Consistent Comparison for The Linearity Air Kerma of IEC Standards and Commercial Load in Diagnosing DR Generators (진단용 DR 발생장치에서 IEC 표준규격과 상용부하의 공기커마 직선성에 대한 일관성 비교)

  • Han, Beom-Hui;Kim, Chong-Yeal;Lee, Sang-Ho;Han, Sang-Hyun;You, In-Gyu
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.389-394
    • /
    • 2012
  • In this study, based on IEC 60601-2-54 standard load conditions presented in the limited interval over the air kerma at the absolute linearity closely evaluated by measuring the X-ray results were as follows: 10 units targeted all Diagnostic X-ray generating device (DR) presented in the IEC 60601-2-54 standard linearity of air kerma emerged as inappropriate, the general evaluation of the dose linearity from four in the top 50% and 80 kVp % of the two measurement series were as irrelevant all the rest from six of the top tube voltage of 50% and 80% of the two measurement series, appeared in all suitable. Presented in IEC 60601-2-54 standard dose linearity testing and conventional linearity tests showed many differences. IEC 60601-2-54 standard linearity in the proposed international standards of air kerma is the recommendation of the existing dose linearity considerably more feasible, and to quantify the amount of radiation as the standard suggested by the standard IEC 60601-2-54 air kerma of a diagnostic X-ray imaging device linearity performance management is considered key elements in the critical appraisal.

Calculation of Concrete Shielding Wall Thickness for 450 kVp X-ray Tube with MCNP Simulation and Result Comparison with Half Value Layer Method Calculation (MCNP 시뮬레이션을 통한 450 kVp 엑스레이 튜브의 콘크리트 차폐벽 두께 계산 및 반가층 방법을 이용한 계산과의 결과 비교)

  • Lee, Sangheon;Hur, SamSurk;Lee, Eunjoong;Kim, Chankyu;Cho, Gyu-seong
    • Journal of Radiation Industry
    • /
    • v.10 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • Radiation generating devices must be properly shielded for their safe application. Although institutes such as US National Bureau of Standards and National Council on Radiation Protection and Measurements (NCRP) have provided guidelines for shielding X-ray tube of various purposes, industry people tend to rely on 'Half Value Layer (HVL) method' which requires relatively simple calculation compared to the case of those guidelines. The method is based on the fact that the intensity, dose, and air kerma of narrow beam incident on shielding wall decreases by about half as the beam penetrates the HVL thickness of the wall. One can adjust shielding wall thickness to satisfy outside wall dose or air kerma requirements with this calculation. However, this may not always be the case because 1) The strict definition of HVL deals with only Intensity, 2) The situation is different when the beam is not 'narrow'; the beam quality inside the wall is distorted and related changes on outside wall dose or air kerma such as buildup effect occurs. Therefore, sometimes more careful research should be done in order to verify the effect of shielding specific radiation generating device. High energy X-ray tubes which is operated at the voltage above 400 kV that are used for 'heavy' nondestructive inspection is an example. People have less experience in running and shielding such device than in the case of widely-used low energy X-ray tubes operated at the voltage below 300 kV. In this study, Air Kerma value per week, outside concrete shielding wall of various thickness surrounding 450 kVp X-ray tube were calculated using MCNP simulation with the aid of Geometry Splitting method which is a famous Variance Reduction technique. The comparison between simulated result, HVL method result, and NCRP Report 147 safety goal $0.02mGy\;wk^{-1}$ on Air Kerma for the place where the public are free to pass showed that concrete wall of thickness 80 cm is needed to achieve the safety goal. Essentially same result was obtained from the application of HVL method except that it suggest the need of additional 5 cm concrete wall thickness. Therefore, employing the result from HVL method calculation as an conservative upper limit of concrete shielding wall thickness was found to be useful; It would be easy, economic, and reasonable way to set shielding wall thickness.

Comparative Evaluation of Kerma Area Product and New Fundamental of Kerma Area Product on Radiography (방사선촬영에서 면적선량 및 새로운 실질면적선량 개념의 비교 평가)

  • Choi, Woo Cheol;Kim, Yongmin;Kim, Jung Su
    • Journal of radiological science and technology
    • /
    • v.44 no.1
    • /
    • pp.53-58
    • /
    • 2021
  • Kerma Area Product (KAP) is best indicator of radiation monitoring on radiographic examinations. KAP can be measured differently depending on the X-ray irradiation area, air kerma, souce-skin distance, type of equipment, etc. The major factors are exposure area and the air krema. The KAP currently used only considers the exposure area with X-rays and has a problem that KAP is always excessively overestimated from the dose received by an actual subject. Therefore, in this study, in order to measure the accurate KAP, a new area dose calculation that can be calculated by dividing the area where the actual X-ray is irradiated is presented, and the KAP is the real area. We compared and analyzed how much it was overestimated compared to the dose. The Skull AP projection and seven other projection were compared and analyzed, and the KAP was overestimated in each test by 52% to 60%. In this way, the effective KAP (EKAP) calculation developed through this study should be utilized to prevent extra calculation of the existing KAP, and only the accurate patient subject area should be calculated to derive the accurate area dose value. EKAP is helpful for control the patient's exposure dose more finely, and it is useful for the quality control of medical radiation exposure.

Experimental Measurement and Monte Carlo Simulation the Correction Factor for the Medium-Energy X-ray Free-air Ionization Chamber

  • Yu, Jili;Wu, Jinjie;Liao, Zhenyu;Zhou, Zhenjie
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1466-1472
    • /
    • 2018
  • A key comparison has been made between the air-kerma standards of the National Institute of Metrology (NIM), China, and other Asia Pacific Metrology Programme (APMP) members in the medium-energy X-ray. This paper reviews the primary standard Free-air ionization chamber correction factor experimental method and Monte Carlo simulation method in the NIM. The experimental method and the Monte Carlo simulation method are adopted to obtain the correction factor for the medium-energy X-ray primary standard free-air ionization chamber at 100 kV, 135 kV, 180 kV, 250 kV four CCRI reference qualities. The correction factor has already been submitted to the APMP as key comparison data and the results are in good agreement with those obtained in previous studies. This study shows that the experimental method and the EGSnrc simulation method are usually used in the measurement of the correction factor. In particular, the application of the simulation methods is more common.

Quality Correction for Ir-192 Gamma Rays in Air Kerma Strength Dosimetry Using Cylindrical Ionization Chambers (원통형 전리함을 이용한 Ir-192 선원에 대한 공기커마세기 측정 시 선질보정에 관한 연구)

  • Jeong, Dong-Hyeok;Kim, Jhin-Kee;Kim, Ki-Hwan;Oh, Young-Kee;Kim, Soo-Kon;Lee, Kang-Kyoo;Moon, Sun-Rock
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.30-36
    • /
    • 2009
  • The quality correction in the air kerma dosimetry for Ir-192 using farmer type ionization chambers calibrated by Co-60 quality is required. In this study we determined quality factor ($k_u$) of two ionization chambers of PTW-N30001 and N23333 for Ir-192 source using dosimetric method. The quality factors for energy spectrum of microSelectron were determined as $k_u$=1.016 and 1.017 for PTW-N30001 and N23333 ionization chambers respectively. We applied quality factors in air kerma dosimetry for microSelectron source and compared with reference values. As a results we found that the differences between reference air kerma rate and measured it with and without quality correction were about -0.5% and -2.0% respectively.

  • PDF

Establishment of the Monoenergetic Fluorescent X-ray Radiation Fields (교정용 단일에너지 형광 X-선장의 제작)

  • Kim, Jang-Lyul;Kim, Bong-Hwan;Chang, Si-Young;Lee, Jae-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.1
    • /
    • pp.33-47
    • /
    • 1998
  • Using a combination of an X-ray generator Installed in radiation calibration laboratory of Korea Atomic Energy Research Institute (KAERI) and a series of 8 radiators and filters described in ISO-4037, monoenergetic fluorescent X-rays from 8.6 keV to 75 keV were produced. This fluorescent X-rays generated by primary X-rays from radiator were discriminated $K_{\beta}$ lines with the aid of filter material and the only $K_{\alpha}$ X-rays were analyzed with the high purity Ge detector and portable MCA. The air kerma rates were measured with the 35 co ionization chamber and compared with the calculational results, and the beam uniformity and the scattered effects of radiation fields were also measured. The beam purities were more than 90 % for the energy range of 8.6 keV to 75 keV and the air kerma rates were from 1.91 mGy/h (radiator : Au, filter : W) to 54.2 mGy (radiator : Mo, filter : Zr) at 43 cm from center of the radiator. The effective area of beam at the measurement point of air kerma rates was 12 cm ${\times}$ 12 cm and the influence of scattered radiation was less than 3 %. The fluorescent X-rays established in this study could be used for the determination of energy response of the radiation measurement devices and the personal dosemeters in low photon energy regions.

  • PDF