DOI QR코드

DOI QR Code

Airborne HPGe spectrometer for monitoring of air dose rates and surface activities

  • Received : 2023.02.01
  • Accepted : 2023.07.16
  • Published : 2023.11.25

Abstract

This contribution describes the application of HPGe detector for the airborne quantitative analysis. The hardware of the airborne HPGe system was designed from the commercial components with only exception of the newly designed AirHPGeSpec special software to control, measure and process the data. The system was calibrated for the local air kerma rates measured on helicopter board and its conversion to the air kerma rates at 1 m above the ground was proposed. Two examples of the air kerma rates measured over the former uranium mining areas are presented and compared with the results of other airborne system on the board. This airborne HPGe system could be also used for measuring the surface activities in a radiation event. The nuclides of 131I, 132Te - 132I, 133I, 134I, 135I, 137Cs, 134Cs, 88Rb and 103Ru were selected from possible nuclear power plant emergency scenarios. The Monte Carlo simulation was used to calculate HPGe detector efficiencies for the flight altitudes from 25 to 300 m for the energies from 300 keV to 3 MeV of the nuclides in question. Also, the detection limits according to the Currie method as well as ISO 11929-2010 for selected nuclides are presented.

Keywords

Acknowledgement

This project was financially supported by the RANUSTD Technology Agency of the Czech Republic (TA CR), TE01020445/RANUS.

References

  1. R.L. Grasty, B.R.S. Minty, A Guide to the Technical Specifications for Airborne Gamma-Ray Surveys, Australian Geological Survey Organisation. Record 1995/60. ISSN: 1039-0073 ISBN: 0 642 22366 1.
  2. B.R.S. Minty, A.P.J. Luyendyk, R.C. Brodie, Calibration and data processing for airborne gamma-ray spectrometry, AGSO J. Aust. Geol. Geophys. 17 (No. 2) (1997) 51-66.
  3. B.R.S. Minty, Fundamentals of airborne gamma-ray spectrometry, AGSO J. Aust. Geol. Geophys. 17 (No. 2) (1997) 39-50.
  4. IAEA, Airborne Gamma-Ray Spectrometer Surveying, Technical Report Series No. 322, IAEA, 1991.
  5. IAEA, Guidelines for Radioelement Mapping Using Gamma-Ray Spectrometry Data, July 2003. IAEA-TEC DOC-1363, IAEA.
  6. J. Kluson, Environmental monitoring and in situ gamma spectrometry, Radiat. Phys. Chem. 61 (2001) 209-216. https://doi.org/10.1016/S0969-806X(01)00242-0
  7. T. Cechak, J. Kluson, A. Malusek, Spectra Processing in Airborne Gamma-Ray Spectrometry Using ENMOS Detection System, Technical University of Prague, Faculty of Nuclear Science and Technical Engineering, Prague, May 1994.
  8. J. Kluson, In-situ gamma spectrometry in environmental monitoring, Appl. Radiat. Isot. 68 (-5) (2010) 529-535. Issues 4. https://doi.org/10.1016/j.apradiso.2009.11.041
  9. B. Bucher, L. Rybach, G. Schwarzc, In-flight online processing and mapping of airborne gamma spectrometry data, Nucl. Instrum. Methods Phys. Res. 540 (2005) 495-501. https://doi:10.1016/j.nima.2004.11.030.
  10. http://www.radiation.ru/eng/project/AGSC.htm.
  11. M. Kettunen, M. Nikkinen, GammaJet-Fixed -wing Gamma Survey for the Detection of Radioactive Material, Finish Support to IAEA, 185, STUK-YTO-TR, June 2002.
  12. http://www.ortec-online.com/.
  13. http://www.picoenvirotec.com/environment/.
  14. P. Kuca, Optimalizace Vyuziti Scintilacniho Spektrometru Pro Stanoveni Odhadu Radionuklidoveho Slozeni Kontaminantu, SURO Praha, 2006 (in Czech).
  15. Proposal for Spectra Processing and Evaluation from Airborne Gamma Spectrometry with HPGe ORTEC S/N GEM25P4-76-HE-SMP-S. SURO Internal Report No. 12/2022. (in Czech).
  16. L.A. Currie, Limits for quantitative detection and qualitative determination, Anal. Chem., 40, 586 - 593.
  17. Determination of the characteristic limits (decision threshold, detection limit and limits of the confidence interval) for measurements of ionizing radiation/Fundamentals and application, in: International Standard ISO 11929, First Edition in Switzerland, 2010.
  18. P. De Felice, S. Jerome, A. Petrucci, Practical implementation of ISO 11929:2010, Appl. Radiat. Isot. 126 (August 2017) 256-262. https://doi:10.1016/j.apradiso.2017.02.004.
  19. M. Ohera, D. Sas, P. Sladek, Calibration of spectrometric detectors for air kerma rates in environmental monitoring, Nucl. Technol. Radiat. Protect. 35 (4) (2020) 323-330, https://doi.org/10.2298/NTRP2004323O.
  20. J.K. Shultis, R.E. Faw, An MCNP PRIMER, Dept. of Mechanical and Nuclear Engineering Kansas State University Manhattan, KS 66506, 2004-2006.
  21. MCNP6 TM User's Manual Version 1.0 LA-CP-13-00634, Rev. 0, Los Alamos National Laboratory, May 2013.
  22. H. L. Beck, J. De Campo, C. Gogolak, In Situ Ge(Li) and NaI(Tl) Gamma-Ray Spectrometry. United States, https://doi.org/10.2172/4599415.
  23. L. Kotik, M. Ohera, Determination of helicopter background and cosmic gamma-ray contribution during airborne measurements, Nuclear Technology and Engineering 55 (2023) 1052-1060, https://doi.org/10.1016/j.net.2022.11.024.
  24. B. Bucher, et al., International intercomparison exercise of airborne gamma-spectrometric systems of the Czech republic, France, Germany and Switzerland in the framework of the Swiss exercise ARM17, PSI Bericht Nr 18-04 (October 2018). ISSN 1019-0643.
  25. Comprehensive Risk Assessment of the Consequences of the Chernobyl Accident, Ukrainian Radiation Training Centre (URTC). Kyiv, 1998.
  26. Y. Nishizawa, M. Yoshida, Y. Sanada, T. Torii, Distribution of the 134Cs/137Cs ratio around the Fukushima Daiichi nuclear power plant using an unmanned helicopter radiation monitoring system, J. Nucl. Sci. Technol. 53 (4) (2016) 468-474, https://doi.org/10.1080/00223131.2015.10.
  27. Recovery Management Strategy for Affected Areas after Radiation Emergency, Project of Ministry of Industry and Trade in Czech Republic, 2017-2020.
  28. A. Selivanova, M. Ohera, I. Cespirova, L. Gryc, Monte Carlo simulation for aerial gamma spectrometry, NNC RK Bulletin (4) (2018) 114-117, https://doi.org/10.52676/1729-7885-2018-4-114-117.
  29. A. Qgis, Free and open source geographic information system. www.qgis.org.
  30. SAGA system for automated geoscientific analyses. https://saga-gis.sourceforge.io/.
  31. ICRU, Gamma-Ray Spectrometry in the Environment. ICRU Report 53, International Commission on Radiation Units and Measurement, 1994.
  32. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP and OIML, Guide to the expression of uncertainty in measurement, JCGM 100:2008 (GUM 1995 with minor corrections). http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf, 2008.