• Title/Summary/Keyword: HPGe detector

Search Result 102, Processing Time 0.033 seconds

Experimental and Simulated Efficiency of a HPGe Detector in the Energy Range of $0.06{\sim}11$ MeV

  • Park Chang Su;Sun Gwang Min;Choi H.D.
    • Nuclear Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.234-242
    • /
    • 2003
  • The full energy peak efficiency of a hyper pure germanium (HPGe) detector was calibrated in a wide energy range from 0.06 to 11 MeV. Both the experimental technique and the Monte Carlo method were used for the efficiency calibration. The measurement was performed using the standard radioisotopes in the low energy region of $60{\sim}1408$ keV, which was further extended up to 11 MeV by using the $^{14}N(n,r)\;and\;^{35}Cl(n,r)$ reactions. The GEANT Monte Carlo code was used for efficiency calculation. The calculated efficiency had the same dependency on the r-ray energy with the measurement, and the discrepancy between the calculation and the measurement was minimized by fine-tuning of the detector geometry. From the calculated result, the efficiency curve of the HPGe detector was reliably determined particularly in the high energy region above several MeV, where the number of measured efficiency points is relatively small despite the wide energy region. The calculated efficiency agreed with the measurement within about $7\%$. In addition to the efficiency calculation, the origin of the local minimum near 600 keV on the efficiency curve was analyzed as a general characteristics of a HPGe detector.

Airborne HPGe spectrometer for monitoring of air dose rates and surface activities

  • Marcel Ohera;Lubomir Gryc;Irena Cespirova;Jan Helebrant;Lukas Skala
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4039-4047
    • /
    • 2023
  • This contribution describes the application of HPGe detector for the airborne quantitative analysis. The hardware of the airborne HPGe system was designed from the commercial components with only exception of the newly designed AirHPGeSpec special software to control, measure and process the data. The system was calibrated for the local air kerma rates measured on helicopter board and its conversion to the air kerma rates at 1 m above the ground was proposed. Two examples of the air kerma rates measured over the former uranium mining areas are presented and compared with the results of other airborne system on the board. This airborne HPGe system could be also used for measuring the surface activities in a radiation event. The nuclides of 131I, 132Te - 132I, 133I, 134I, 135I, 137Cs, 134Cs, 88Rb and 103Ru were selected from possible nuclear power plant emergency scenarios. The Monte Carlo simulation was used to calculate HPGe detector efficiencies for the flight altitudes from 25 to 300 m for the energies from 300 keV to 3 MeV of the nuclides in question. Also, the detection limits according to the Currie method as well as ISO 11929-2010 for selected nuclides are presented.

Study on the cascade summing correction for high efficiency HPGe detector (고효율 HPGe 검출기의 동시합성효과 보정 연구)

  • Lee, M.S.
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.3
    • /
    • pp.107-112
    • /
    • 2005
  • Cascade summing occurs when two gamma-rays emitted in the decay of a single nucleus both deposit energy in a detector. The effect may cause systematic errors that can reach levels of more than ten percent for some radionuclides. A method for estimation of the effect of these coincidences was developed. It is based on direct computation of the effect by means of peak to total ratio measured for the place around the detector. It has been shown that the P/T ratio for the given energy in the working space around the detector may not be a constant value and must use its mean value. Some results from a peak to total calibration study in the presence of scattering materials are also given.

Signal Shapes from a Closed-ended Coaxial HPGe Detector

  • Park, H. D.
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.451-458
    • /
    • 1997
  • Signal shapes from a closed-ended coaxial HPGe detector are investigated by numerical methods. The detector used in this study has a volume of 72 ㎤ with relative efficiency of 15%. The electric field and potential distributions in the detector are determined by solving the Poisson equation at the depletion and operating bias. Hence the time dependent signal shapes induced on the electrode are obtained from the energy balance consideration and tv solving the equation of motion for the charge carriers. For various initial positions of a charge carrier pair, the collection times of induced charge vary in the range of 70 - 404 nsec.

  • PDF

Development of a simple laboratory-made radioactive source to check the integrity of a gamma spectrometry system with HPGe detector (HPGe 검출기를 사용한 감마분광분석계의 점검선원 개발)

  • Lee, Mo Sung
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.2
    • /
    • pp.119-123
    • /
    • 2013
  • A simple laboratory-made radioactive source to check the integrity of a gamma spectrometry system with HPGe detector was developed. The check source consists of radium-riched soil which was ground in size of less than 0.154mm and contained in air tight cylinderical vial, and provides photons with 12 distinct energies. The spectra of the check source were measured once a month during one year, analyzed the charactreictics of their peaks. When the gamma spectrometry system was in normal state, the areas and FWHMs of the gamma rays with more than 3% gamma emission rate in radium and its decay products was constant within standard deviation 2% and 3%, respectively, except 77 keV peak. And it was found that this check source can play a sufficient role to check the integrity of a gamma spectrometry system using 10 peaks in the range of 77 to 2202 keV.