• Title/Summary/Keyword: air flotation

Search Result 130, Processing Time 0.021 seconds

Temperature Effect in the process of DAF as pretreatment of SWRO (해수담수화 전처리로서 DAF공정에서 고온의 해수에 대한 영향 특성)

  • Park, Hyunjin;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.807-813
    • /
    • 2012
  • Flocculation and flotation are used as pretreatment steps prior to the reverse osmosis (RO) process. During seawater treatment, high temperature can change the water chemistry of seawater during the process of coagulation. It also affects bubble volume concentration (BVC) and bubble characteristics. Coagulants such as alum and ferric salts at $40^{\circ}C$ can also change flux rates in the seawater reverse osmosis (SWRO) process. In this study, the bubble characteristics in dissolved air flotation (DAF), used as a SWRO pretreatment process, were studied in synthetic seawater at $20^{\circ}C$ and $40^{\circ}C$. The flux of an RO membrane was monitored after dosing the synthetic seawater with coagulants at different temperatures. Results showed that BVC increases as the operating pressure increases and as the salt concentration decreases. The bubble size released at $40^{\circ}C$ is far smaller than that at $20^{\circ}C$The addition of a ferric salt is effective for turbidity removal in synthetic seawater at $20^{\circ}C$; it is more effective than alum. When synthetic seawater was dosed with a ferric salt, the RO membrane flux increased by 27 % at $40^{\circ}C$.

Combination of Sequential Batch Reactor (SBR) and Dissolved Ozone Flotation-Pressurized Ozone Oxidation (DOF-PO2) Processes for Treatment of Pigment Processing Wastewater

  • Kim, Jeong-Hyun;Kim, Hyung-Suk;Lee, Byoung-Ho
    • Environmental Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.97-102
    • /
    • 2011
  • This study investigates the treatment of pigment wastewater using a sequential batch reactor (SBR) followed by dissolved ozone flotation-pressurized ozone oxidation treatement (DOF-$PO_2$). The process efficiency has been evaluated at the lab scale on the basis of water quality parameters. In addition, the effect of pure oxygen and air was investigated on the removal of COD, BOD, and TN in the SBR process. It was observed that under comparable conditions the removal efficiencies of these water quality parameters using pure oxygen and air were similar. The effect of the recycle rate was also investigated for its impact on the water quality parameters using different ozone dissolving pressures in a DOF process in order to optimise conditions. The results conclude that the use of an SBR and ozone contact by DOF-$PO_2$ is a highly effective treatment for pigment wastewater and aids in the achievement of effluent discharge criteria.

Size Characteristics of Micro-bubbles According to Applied Voltage and Electrode materials (전해부상에서 전압과 극판 재질에 따른 미세기포의 크기 특성)

  • Park, Yong-hyo;Han, Moo-young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.663-669
    • /
    • 2002
  • Electro-flotation (EF) has shown advantages, such as a high removal efficiency and easy control of bubble generation, over dissolved air flotation. However, the fundamental characteristics of the process have not been investigated in detail. According to recent modeling results from trajectory analysis, the size of the bubble is one of the most important factors that affect the efficiency of collision between bubble and particle. In this paper, the size characteristics of bubbles generated from EF under various conditions are measured using a new method for bubble size measurement, the Particle Counter Method (PCM). The size of the generated bubbles was found to be constant with respect to applied voltage but to vary with the electrode materials. These results and their implications are discussed.

Evaluation of Flotation Efficiency and Particle Separation Characteristics of Carbon Dioxide Bubbles using Collision Efficiency Model (단일포집자충돌(SCC) 모델을 이용한 이산화탄소기포의 입자분리특성과 부상효율 평가)

  • Lee, Jun-Young;Kim, Seong-Jin;Yoo, Young-Hoon;Chung, Paul-Gene;Kwon, Young-Ho;Park, Yang-Kyun;Kwak, Dong-Heui
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.129-136
    • /
    • 2012
  • In this century, scientists realized that carbon dioxide gas in the atmosphere cause a greenhouse effect which affects the planet's temperature. Therefore lots of attempts have carried out to decrease the discharge of carbon dioxide gas in the field. The dissolved carbon dioxide flotation (DCF) process was developed as an alternative of DAF process to decrease the discharge and reuse of carbon dioxide as well as to save energy consumption. To investigate the particle separation characteristics and the flotation efficiency of carbon dioxide, SCC model was employed in the DCF process which has been applied extensively for the evaluation and simulation in the DAF process. The simulation results by the SCC model revealed the predicted curve of flotation efficiency became decreased gradually over the optimal pressure range of saturator about 1.6 atm in accordance with the experiment results of the DCF pilot plant and the size distribution and the bubble volume concentration of $CO_{2}$ bubbles depending on the operation pressure of saturator. The findings through the simulation results led to the conclusion that there was no significant difference between $CO_{2}$ bubbles and air bubbles, affecting on the practical flotation efficiency, in terms of the initial collision and attachment efficiency.

A Comparative Study of Turbulence Models for Dissolved Air Flotation Flow Analysis (용존공기부상법 유동해석을 위한 난류모델 비교연구)

  • Park, Min A;Lee, Kyun Ho;Chung, Jae Dong;Seo, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.617-624
    • /
    • 2015
  • The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard ${\kappa}-{\varepsilon}$ model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models.

Colour Removal from Aqueous Solutions by Flotation Process (부상공정에 의한 수용액으로부터 색 제거)

  • Roh, Sung-Hee;Yun, Young-Jae;Kim, Jin-Hwan;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.576-580
    • /
    • 1999
  • The removal of colours from aqueous solution and/or dispersions has been studied by dispersed-air flotation, in a semi-batch column. Two colours were used for the experiments: Basic Yellow 28(basic) and Direct Orange 31(basic). All two effectively removed by flotation within 8 min. Sodium dodecyl sulfate, sodium oleate and amines were found to be effective as collectors in the removal of colour, which was found to be related to the pH of the solution and the amount of collector added to it, with high collector dosages causing the process to become pH-independent.

  • PDF

Thickening of Sludge from DAF process by Flotation; Application of Solid Flux Theory and Effective Factors (DAF 슬러지의 부상식 농축; 고형물 플럭스법 적용과 영향인자)

  • Park, Sangcheol;Han, Mooyoung;Dockko, Seok;Kwon, Soonbuhm
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.617-626
    • /
    • 2006
  • Compared with the sludge from gravity sedimentation, it is difficult for operations to settle the sludge occurred from dissolved-air-flotation (DAF). Even though there are some problems in treating DAF sludge with conventional gravity thickeners, those has been used until now. In this study, Solid Flux theory for gravity thickening was applied to the Solid Flux of DAF sludge through flotation in order to develop new methodology for treatment of DAF sludge. Also, characteristics of DAF sludge were investigated. From the experiment results, it was revealed that the higher the polymer dosage, at fixed the solid concentration, the greater the rising velocity becomes. When we applied solid flux theory, the relationship, which is similar to that of gravity thickening, has been achieved. Also, we could find the proper polymer dosage from the rising velocity is about 50 mg/L. Consequently, the limiting solid flux can be derived from the relationship between the total solid flux and the withdrawal velocity of DAF sludge. Furthermore, the factors, such as solid concentrations, bubble volume, pH, zeta potential, and temperature, have effects on the flotation and sedimentation for DAF sludge treatment.

Recycling of Wastepaper(V): -Calcium Hardness Control of Process Water for Zero-Discharge System- (고지재상연구 (제5보) -공정수 폐쇄화를 위한 칼슘경도 조절-)

  • 지경락;류정용;신종호;송봉근;오세균
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.2
    • /
    • pp.15-24
    • /
    • 1999
  • A new technique for recycling of white water was developed in order to reduce the calcium hardness in a closed OCC recycling system. Calcium ions present in the white water were precipitated as calcium carbonate by reacting with sodium carbonate, and the precipitated $CaCO_3$ was removed from the system using a flotation fractionation method, which has been commonly used in deinking process. In the flotation stage, a mixed gas of $CO_2$-air was purged into the flotation cell because the pH of $Na_2CO_3$-treated white water was reduced to neutral by $CO_2$ gas. Since $CaCO_3$ precipitate tends to stick onto fine fiber surface and then selectively removed from the white water, a proper amount of suspended solid in white water acts as an important factor for deciding the removal efficiency. By the application of $Na_2CO_3$ addition-$CO_2$ flotation to the short circulated white water, the calcium hardness was significantly reduced by 87% and more. Removal of calcium ions with fine fibers led to a drainage improvement, reduction of fresh water consumption, and enhanced efficiency of wet-end chemicals.

  • PDF