DOI QR코드

DOI QR Code

A Comparative Study of Turbulence Models for Dissolved Air Flotation Flow Analysis

용존공기부상법 유동해석을 위한 난류모델 비교연구

  • Park, Min A (School of Mechanical and Aerospace Engineering, Sejong Univ.) ;
  • Lee, Kyun Ho (School of Mechanical and Aerospace Engineering, Sejong Univ.) ;
  • Chung, Jae Dong (School of Mechanical and Aerospace Engineering, Sejong Univ.) ;
  • Seo, Seung Ho (Tops Engineering Co, Ltd.)
  • 박민아 (세종대학교 기계항공우주공학부) ;
  • 이균호 (세종대학교 기계항공우주공학부) ;
  • 정재동 (세종대학교 기계항공우주공학부) ;
  • 서승호 ((주) 탑스 엔지니어링)
  • Received : 2015.01.19
  • Accepted : 2015.04.29
  • Published : 2015.07.01

Abstract

The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard ${\kappa}-{\varepsilon}$ model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models.

용존공기부상법이란 오염물에 미세기포를 부착하여 수표면으로 부상시킴으로써 이를 제거하는 수처리 방법이다. 본 연구에서는 난류모델에 따른 용존공기부상조 내부 유동해석의 변화를 고찰하기 위해 물과 기포의 혼합물에 대한 2상 유동을 모사하였다. 이때, 주어진 용존공기부상조 형상 및 조건에 대하여 다양한 난류모델에 따른 용존공기부상법 내부의 미세기포 분포량, 계산시간 및 수렴성 등을 비교하였으며, 그 결과 기존에 주로 사용되었던 표준 ${\kappa}-{\varepsilon}$ 모델이 타 난류모델과는 다른 거동을 예측하는 것으로 확인되었다.

Keywords

References

  1. Kim, Y. M., 2000, "Analysis of Dissolved Air Process Using Computational Fluid Dynamics," Master's Thesis, Civil Engineering, KAIST.
  2. Ryu, G. N., Park, S. M., Lee, H. I. and Chung, M. K., 2010, "Numerical Study of Effect of DAF-Tank Shape on Flow Pattern in Separation," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 8, pp. 855-860. https://doi.org/10.3795/KSME-B.2011.35.8.855
  3. Lundh, M., Jonsson, L. and Dahlquist, J., 2000, "Experimental Studies of the Fluid Dynamics in the Separation Zone in Dissolved Air Flotation," Water Res., Vol. 34, No. 1, pp. 21-30. https://doi.org/10.1016/S0043-1354(99)00136-0
  4. Amato, T. and Wicks, J., 2009, "The Practical Application of Computational Fluid Dynamics to Dissolved Air Flotation, Water Treatment Plant Operation, Design and Development," Journal of Water Supply : Res. Tech.-AQUA, Vol. 58, No. 1, pp. 65-73. https://doi.org/10.2166/aqua.2009.003
  5. Emmanouil V., Karapantsios, T. D. and Matis, K. A., 2011, "Two and Three Phase Simulation of an Ill-Functioning Dissolved Air Flotation Tank," Env. and Waste Management, Vol. 8, No. 3/4, pp. 215-228. https://doi.org/10.1504/IJEWM.2011.042632
  6. Kostoglou, M., Karapantsios, T.D. and Matis, K. A., 2007, "CFD Model for the Design of Large Scale Flotation Tanks for Water and Wastewater Treatment," American Chem. Soc., Vol. 46, pp. 6590-6599.
  7. Lahghomi, B., Lawryshyn, Y. and Hofmann, R., 2012, "Importance of Flow Stratification and Bubble Aggregation in the Separation Zone of a Dissolved Air Flotation Tank," Water Res., Vol. 46, No. 14, pp. 4468-4476. https://doi.org/10.1016/j.watres.2012.05.038
  8. Bondelind, M., Sasic, S., Pettersson, T. J. R., Karapantsios, T. D., Kostoglou, M. and Bergdahl, L., 2010, "Setting Up a Numerical Model of a DAF Tank : Turbulence, Geometry, and Bubble size," American Soc. of Civil Eng., Vol. 136, No. 12, pp. 1424-1434.
  9. Kim, J. Y., 2012, "FLUENT Basic," TSNE Inc., Seoul.
  10. ANSYS Inc., 2013, "ANSYS Fluent Theory Guide Release 15," ANSYS Inc, Pennsylvania.
  11. Myong, H. G., 2012, "A Guide to CFD," Munundang, Seoul, pp. 46-74.
  12. Babaahmadi, A., 2010, "Numerical Investigati -on of the Contact Zone on Geometry, Multiphase Flow and Needle Valves," Master's Thesis, Civil and Environment Engineering, Chalmers Univ. of Tech.
  13. Seul, K. W., Yoon, D. H. and Ki, N. S., 2013, "Thermal-Hydraulic Detailed Analysis Inside Pipe and Tube by Using CFD Techniques," Korean Institute of Nuclear Safety.
  14. Gregory, R. and Edzwald, J. K., 2011, "Water Quality and Treatment," McGraw-Hill, New York.