• Title/Summary/Keyword: air diffuser

Search Result 184, Processing Time 0.022 seconds

Enhance of Dissolved Oxygen Rate using a 3-prong Nozzle (3구 노즐을 이용한 산소의 용존율 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.947-954
    • /
    • 2015
  • Dielectric barrier discharge plasma is a new technique in water pollutant degradation, which that is characterized by the production of chemically active species such as hydroxyl radicals, ozone, hydrogen peroxide, etc. If dissolving of plasma gas generated in the plasma reaction has increased, it is possible to increase the contaminant removal capacity. In this study, the improvement on the dissolving performance of plasma gas was evaluated by the indirect method measuring the overall oxygen transfer coefficient. Experiments were conducted to examine the effects of nozzle type, distance from water surface, air supply rate and liquid circulation rate. The experimental results showed that the $K_{La}$ value of the 3-prong nozzle is 2.67 times higher than the diffuser. The order of $K_{La}$ value with nozzle type ranked in the following order: 3-prong nozzle (inner diameter, less 1 mm) > circular nozzle (inner diameter, 1.5 mm) > ellipse nozzle (short diameter 1 mm, long diameter 2.5 mm) > circular nozzle (inner diameter, 3 mm). Optimal liquid circulation rate was appeared to be 1.7 L/min, the value of $K_{La}$ was 0.510 1/min. The value of $K_{La}$ with increasing air supply rate was revealed in the form of an exponential such as $K_{La}=0.3581e^{0.2919^*air\;flow\;rate}$.

Study on TES system application for industrial production facility (축냉시스템의 산업용 생산설비 적용에 대한 고찰)

  • Park, C.H.;Hong, S.S.;Kim, J.R.;Park, S.S.;Hwang, H.S.
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1288-1293
    • /
    • 2009
  • The TES (Thermal Energy Storage) cooling system utilizing cheaper off-peak electricity has been applied just for building air-conditioning currently and causes limitation of usage rate and inefficiency of national resources utilization. In this regard, more says the necessity to apply TES system in industrial cooling system which is longer using period and wider usage. In this study, we will approve the technical and economical improvement in efficiency of industrial cooling system applied TES system by utilizing cheaper off-peak electricity and it will attribute the promotion of TES system and stabilization of supply and demand of electric power by proving the necessity to develop more efficient industrial cooling system by combining TES system.

  • PDF

Fundamental design consideration for optimum performance in altitude test cell facility (고공시험설비의 전체 사양을 결정하는 시험부를 중심으로 설비개발시의 주요 고려사항)

  • Choi, Kyoung-Ho;Lee, Jung-Hyung;Owino, George;Lee, Dae-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.411-415
    • /
    • 2008
  • This paper presents on design factor considered in an altitude test cell facility to determine the best sizing to optimize exhaust diffuser pressure recovery and the exact cooling load required to be supplied under transient operation. Engine simulation was performed to analyse the exhaust gas temperature, exit mass flow rate, specific fuel consumption and exhaust velocity helpful in determining secondary mass air flow and the mixed air temperature entering the ejector. based on this, the amount of cooling load was deduced. It was found that improved pressure recovery reduces operational cost(air supply facility, cooling water).

  • PDF

Improvement of Gas Dissolution Rate using Air Atomizing Nozzle (이류체 노즐을 이용한 가스의 용존율 향상)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.3
    • /
    • pp.219-225
    • /
    • 2018
  • This study was conducted to investigate the possibility of utilizing various types of nozzles and gas-liquid mixers to increase the dissolution rate of plasma gas containing ozone generated in a dielectric barrier plasma reactor. After selecting the air atomizing nozzle with the highest gas dissolution rate among the 13 types of test equipment, we investigated the influence of the operating factors on the air atomizing nozzle to determine the optimal plasma gas dissolution method. The gas dissolution rate was measured by a simple and indirect method, specifically, the measurement of KLa instead of direct measurement of ozone concentration, which requires a longer analysis time. The results showed that the KLa value of the simple mix of air and water was $0.372min^{-1}$, Which is 1.44 times higher than that ($0.258min^{-1}$) of gas emitted from a normal diffuser. Among the nozzles of the same type, the KLa value was highest for the nozzle having the smallest orifice diameter. Among the 13 types of devices tested, the nozzle with highest KLa value was the M22M nozzle, which is a gas-liquid spray nozzle. The relationship between water circulation flow rate and KLa value in the experimental range was linear. The air supply flow rate and KLa value showed a parabolic-type correlation, while the optimum air supply flow rate for the water circulation flow rate of 1.8 L / min is 1.38 times.

Design Optimization for Air Ducts and Fluid Pipes at Electromagnetic Pulse(EMP) Shield in Highly Secured Facilities (EMP 방호시설의 덕트 및 배관 최적 설계 방안)

  • Pang, Seung-Ki;Kim, Jae-Hoon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.4
    • /
    • pp.15-24
    • /
    • 2014
  • This study conducted a computational fluid dynamics(CFD) analysis to find an appropriate diameter or sectional area of air ducts and fluid pipes which have an electromagnetic pulse(EMP) shied to protect indoor electronic devices in special buildings like military fortifications. The result shows that the optimized outdoor air intake size can be defined with either the ratio of the maximum air velocity in the supply duct to the air intake size, or the shape ratio of indoor supply diffuser to the outdoor air intake. In the case of water channel, the fluid velocity at EMP shield with the identical size of the pipe, decreases by 25% in average due to the resistance of the shield. The enlargement of diameter at the shield, 2 step, improves the fluid flow. It illustrated that the diameter of downstream pipe size is 1step larger than the upstream for providing the design flow rate. The shield increases friction and resistance, in the case of oil pipe, so the average flow velocity at the middle of the shield increase by 50% in average. In consideration of the fluid viscosity, the oil pipe should be enlarged 4 or 5 step from the typical design configuration. Therefore, the fluid channel size for air, water, and oil, should be reconsidered by the engineering approach when EMP shield is placed in the middle of channel.

Post Occupancy Evaluation for Office Building with An Underfloor Air Distribution System (바닥공조 시스템이 적용된 사무공간의 거주후 성능평가)

  • Yoon, Seong-Hoon;Jang, Hyang-In;Jung, Hae-Kwon;Choi, Sun-Kyu;Yu, Ki-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.78-85
    • /
    • 2011
  • In this study, an underfloor air distribution(UFAD) system installed on the S. office building was evaluated for its indoor environmental quality performance. Field measurement and survey were conducted for the overall POE(Post Occupied Evaluation). PMV(including temperature, humidity, air velocity and globe temperature) and several environmental components were measured while thermal comfort, thermal sensation, acoustical environment and others. were investigated through survey. Except for the direct upper part of the air supply diffuser on the floor, the indoor velocity was less than 0.25m/s, which has been suggested by ASHRAES tandard 55 as the limit for thermal comfort. MRT of the perimeter zone of the room showed a higher value than that in the interior because of the introduced solar radiation through the building envelope. PMV was generally maintained in the range of thermal comfort (from -0.5 to +0.5), though it weighted to the warm side. It was reported to have 61% positive response on thermal comfort and 55% on neutral thermal sensation. The results of each survey item showed some gender-based differences. Specifically, female respondents had higher degree of dissatisfaction with indoor air cleanness and acoustical privacy. The working surface showed more than 400 lux and the equivalent noise level showed less than 50 dB(A). In conclusion, the results of the measurement and survey showed good agreement. Indoor environmental quality of the subject office room where the UFAD system was installed showed an overall excellent performance.

The design of an ejector type microbubble generator for aeration tanks

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.307-311
    • /
    • 2019
  • The ejector type microbubble generator, which is the method to supply air to water by using cavitation in the nozzle, does not require any air supplier so it is an effective and economical. Also, the distribution of the size of bubbles is diverse. Especially, the size of bubbles is smaller than the bubbles from a conventional air diffuser and bigger than the bubbles from a pressurized dissolution type microbubble generator so it could be applied to the aeration tank for wastewater treatment. However, the performance of the ejector type microbubble generator was affected by hydraulic pressure and MLSS(Mixed Liquor Suspended Solid) concentration so many factors should be considered to apply the generator to aeration tank. Therefore, this study was performed to verify effects of hydraulic pressure and MLSS concentration on oxygen transfer of the ejector type microbubble generator. In the tests, the quantity of sucked air in the nozzle, dissolved oxygen(DO) concentration, oxygen uptake rate(OUR), oxygen transfer coefficient were measured and calculated by using experimental results. In case of the MLSS, the experiments were performed in the condition of MLSS concentration of 0, 2,000, 4,000, 8,000 mg/L. The hydraulic pressure was considered up to $2.0mH_2O$. In the results of experiments, oxygen transfer coefficient was decreased with the increase of MLSS concentration and hydraulic pressure due to the increased viscosity and density of wastewater and decreased air flow rate. Also, by using statistical analysis, when the ejector type microbubble generator was used to supply air to wasterwater, the model equation of DO concentration was suggested to predict DO concentration in wastewater.

Enhancement of OH Radical Generation of Dielectric Barrier Discharge Plasma Gas Using Air-automizing Nozzle (이류체 노즐을 이용한 유전체장벽방전 플라즈마 가스의 OH 라디칼 생성 향상)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.621-629
    • /
    • 2018
  • Many chemically active species such as ${\cdot}H$, ${\cdot}OH$, $O_3$, $H_2O_2$, hydrated $e^-$, as well as ultraviolet rays, are produced by Dielectric Barrier Discharge (DBD) plasma in water and are widely use to remove non-biodegradable materials and deactivate microorganisms. As the plasma gas containing chemically active species that is generated from the plasma reaction has a short lifetime and low solubility in water, increasing the dissolution rate of this gas is an important challenge. To this end, the plasma gas and water within reactor were mixed using the air-automizing nozzle, and then, water-gas mixture was injected into water. The dissolving effect of plasma gas was indirectly confirmed by measuring the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the formation of OH radical) solution. The plasma system consisted of an oxygen generator, a high-voltage power supply, a plasma generator and a liquid-gas mixing reactor. Experiments were conducted to examine the effects of location of air-automizing nozzle, flow rate of plasma gas, water circulation rate, and high-voltage on RNO degradation. The experimental results showed that the RNO removal efficiency of the air-automizing nozzle is 29.8% higher than the conventional diffuser. The nozzle position from water surface was not considered to be a major factor in the design and operation of the plasma reactor. The plasma gas flow rate and water circulation rate with the highest RNO removal rate were 3.5 L/min and 1.5 L/min, respectively. The ratio of the plasma gas flow rate to the water circulation rate for obtaining an RNO removal rate of over 95% was 1.67 ~ 4.00.

An Estimation on Indoor Thermal Environment by Pressurized Plenum Under Floor Air Conditioning System in Heating (난방시 가압식 바닥취출 공조방식의 실내온열환경 평가)

  • Choi, Eun-Hun;Lee, Yong-Ho;Kwon, Young-Cheol;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.92-99
    • /
    • 2010
  • The purpose of this study is to apply pressurized plenum under floor air conditioning system to office areas to understand characteristics of indoor thermal environment based on forms of diffusers. For doing this, the author conducted experiment of module measurement, and based on the results, analyzed indoor temperature distribution and velocity distribution based on direction of diffusion by using Computational Fluid Dynamics(CFD), and estimated the Predicted Mean Vote(PMV) of residents based on forms of diffusers to present the optimal air conditioning of the pressurized plenum under floor air conditioning system in heating. The results of this study are as follows. First, as for forms of diffusers, distributed diffusers rather than conical and grill diffusers were favorable in maintaining $24^{\circ}C$, the established temperature in heating, were active in velocity flowing, and were wide in a radius of diffusion. Second, as for position of pressurizing, the difference between upper and lower temperature was wider in center, lateral, and dispersed pressurizing (in order). As for velocity distribution, the velocity was more increased in lateral, center, and dispersed pressurizing(in order), indicating that dispersed pressurizing maintained uniform thermal environment. Third, as for diffusion direction, mixed direction showed less difference between upper and lower temperature and the difference in velocity between center and lateral part was 0.01m/1, indicating that it maintained uniform thermal environment. Fourth, as for the PMV of residents based on the forms of diffusers, the dispersed type showed(+) values above (0) when applied variably based on the position of diffuser, presenting thermal feeling of "being comfortable" to residents.

A Measurement and Evaluation on the Indoor Thermal Conditions in Summer of a New Training ship (신조 운항실습선의 여름철 실내 온열환경 실측평가)

  • Shin, Dong-Keol;Lee, Jin-Uk;Lee, Hyong-Ki;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.276-283
    • /
    • 2008
  • The purpose of this study is to measure and analyze the ship's indoor thermal conditions and also to integrate experimental database of those which are supplied and controlled by marine HVAC. On this study, temperature, humidity and air volume of 6 different needs' cabin are measured like previous report on a newly-launched training ship during 25th through 27th of July, 2007. Followings are the results of this study. (1)The air supply volumes to each cabins are measured 250CMH(Recreation room), 800CMH(Conference room), 1.000CMH(Bridge), 5,100CMH(Lecture room) respectively. (2)The temperatures are maintained at $21{\sim}27^{\circ}C$ in almost cabins through measuring period, but the temperatures are fluctuated over ${\pm}4^{\circ}C$ at the bridge and conference room. (3)The relative humidities are shown between $40{\sim}60%$ known as comfort conditions, but the conference room is needed to dehumidified because of over 70% humidity. (4)From the student cabins' measurements which have different supply diffuser(s), it is clear that the design is suitable for this case. (5)Because of temperature diversities, only 32% among the measured data are satisfied with the comfort standard range proposed by ASHREA.