DOI QR코드

DOI QR Code

Enhance of Dissolved Oxygen Rate using a 3-prong Nozzle

3구 노즐을 이용한 산소의 용존율 향상

  • Park, Young-Seek (Division of Creative Integrater General Studies, Daegu University)
  • Received : 2015.03.16
  • Accepted : 2015.05.18
  • Published : 2015.07.31

Abstract

Dielectric barrier discharge plasma is a new technique in water pollutant degradation, which that is characterized by the production of chemically active species such as hydroxyl radicals, ozone, hydrogen peroxide, etc. If dissolving of plasma gas generated in the plasma reaction has increased, it is possible to increase the contaminant removal capacity. In this study, the improvement on the dissolving performance of plasma gas was evaluated by the indirect method measuring the overall oxygen transfer coefficient. Experiments were conducted to examine the effects of nozzle type, distance from water surface, air supply rate and liquid circulation rate. The experimental results showed that the $K_{La}$ value of the 3-prong nozzle is 2.67 times higher than the diffuser. The order of $K_{La}$ value with nozzle type ranked in the following order: 3-prong nozzle (inner diameter, less 1 mm) > circular nozzle (inner diameter, 1.5 mm) > ellipse nozzle (short diameter 1 mm, long diameter 2.5 mm) > circular nozzle (inner diameter, 3 mm). Optimal liquid circulation rate was appeared to be 1.7 L/min, the value of $K_{La}$ was 0.510 1/min. The value of $K_{La}$ with increasing air supply rate was revealed in the form of an exponential such as $K_{La}=0.3581e^{0.2919^*air\;flow\;rate}$.

Keywords

References

  1. Al-Abduly, A., Christensen, P., Harvey, A., Zahng, K., 2014, Characterization and optimization of an oscillatory baffled reactor(OBR) for ozone-water mass transfer, Chem. Eng. Proces., 84, 82-89. https://doi.org/10.1016/j.cep.2014.03.015
  2. Bin, A. K., 2004, Ozone dissolution in aqueous systems treatment of the experimental data, Exp. Ther. Fluid Sci., 28, 395-405. https://doi.org/10.1016/j.expthermflusci.2003.03.001
  3. Chung, J. W., Lee, H. D., Lee, Y. H., Jun, G. I., Kim, H. K., Cho, M. H., 2004, Ozone generation characteristics of silent discharge process, J. of Kor. Soc. Enviorn. Eng., 26(3), 305-312.
  4. Farines, V., Baig, S., Albet, J., Molinier, J., Legay, C., 2003, Ozone transfer from gas to water in a cocurrent upflow packed bed reactor containing silicagel, Chem. Eng. J., 91, 67-73. https://doi.org/10.1016/S1385-8947(02)00137-7
  5. Jung, J. K., 2009, Generation apparatus and method on the water plasma torch with high-density, Korean Patent, 10-0924649.
  6. Kim D. S., Park, Y. S., 2013a, Development of multi dielectric barrier discharge plasma reactor for water treatment, J. of Environ. Sci. Int., 22(7), 863-871. https://doi.org/10.5322/JESI.2013.22.7.863
  7. Kim D. S., Park, Y. S., 2013b, A study for oxidants generation on oxygen-plasma discharging process discharging system, J. of Environ. Sci. Int., 22(12), 1561-1569. https://doi.org/10.5322/JESI.2013.22.12.1561
  8. Kim, D. S., Park, Y. S., 2011, Removal of Rhodamine B dye using a water plasma process, J. Environ. Health Sci., 37(3), 218-225.
  9. Kim, D. S., Park, Y. S., 2012, Development of plasma reactor of dielectric barrier discharge for water treatment, J. of Environ. Sci. Int., 21(5), 597-603. https://doi.org/10.5322/JES.2012.21.5.597
  10. Kim, D. S., Park, Y. S., 2014, Study on the generation of chemically active species using air-plasma discharging system, J. Kor. Soc. on Wat. Environ., 30(4), 394-402. https://doi.org/10.15681/KSWE.2014.30.4.394
  11. Kim, H, S., Song, S. J., 2004, Surface treatment technology using low-temperature/atmosphericpressure plasma, Trends in Met. & Mat. Eng., 17(4), 21-27.
  12. Kim, H. S., Hong, S. J., 2004, Low temperature/atmospheric pressure plasma surface treatment technology, Mat. Yard, 17(4), 21-27.
  13. Lee, S. H., Jung, K. J., Kwon, J. H., Lee, S. H., 2010, A study on the solubilisation of excess sludge using microbubble ozone, J. of Kor. Soc. Environ. Eng., 32(4), 325-332.
  14. Lukes, P., Appleton, T., Locke, B. R., 2004, Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge reactors, IEEE Trans. Ind. Appl., 40, 60-67. https://doi.org/10.1109/TIA.2003.821799
  15. Muhammad, A. M., Abdul, G., Salman, A. M., 2001, Water purification by electrical discharges, Plasma Sci. and Tech., 10, 82-91. https://doi.org/10.1088/0963-0252/10/1/311
  16. Naver, 2015, http://terms.naver.com/entry.nhn?docId=269540&cid=42641&categoryId=42641.
  17. Park, Y. S., Kim, D. S., 2011, Degradation of N,NDimethyl-4-nitrosoaniline (RNO) using air plasma process, The Kor. Environ. Sci. Soc. 2011 Annual Conf. Proceedings, 20, 388-390.
  18. Qiu, Y., Kuo, C. H., Zappi, M. E., 2001, Performance and simulation of ozone absorption and reactions in a stirred-tank reactor, Environ. Sci. Technol., 35(1), 209-215. https://doi.org/10.1021/es001281d
  19. The Korean Institute of Surface Engineering, 2007, Outline of plasma technology and its industrical application, Trends of Metals & Materials Engineering, 20(4), 4-19.
  20. Yang, H. C., Park, S. K., 2011, Effect of salinity on dissolved oxygen characteristics in an ejector-aerator, J. of Kor. Soc. Mar. Eng., 35(5), 640-646. https://doi.org/10.5916/jkosme.2011.35.5.640