• Title/Summary/Keyword: air defense

Search Result 592, Processing Time 0.026 seconds

Simulations of Dynamic Characteristics of the Underwater Discharge System with Compressed Air (압축공기 방식 수중발사 시스템의 동특성 시뮬레이션)

  • Park In-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.2 s.17
    • /
    • pp.41-47
    • /
    • 2004
  • In this paper, simulations of the underwater discharge system with compressed air are performed to predict dynamic characteristics of the system and to find optimal opening trajectories of the expulsion valve. Major components of the system are defined and their governing equations are derived to make up the mathematical model. The compressed air discharge method is affected largely by the discharge depth, and therefore the opening trajectories according to the discharge depth should be found to satisfy the demands of discharge performances. Simulation results are compared with experimental data to confirm the validity of the system model.

Stealth Aircraft Technology and Future Air Warfare (스텔스 항공기 기술과 미래 항공전장)

  • Sohn, Myong-Hwan;Jung, JongHee;Lee, Joon;Kwag, Hyun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.81-92
    • /
    • 2019
  • Stealth means the reduction of all signature including the reflection/emission of radar, infrared, visible light and audio signals. Stealth aircraft can significantly improve the penetration capability, the combat survivability and the mission effectiveness. This paper presents the basic concept, the key elements and the application examples of stealth aircraft technology. Also it briefly describes the effect of the modern stealth aircraft on the future air warfare.

Flight Loads Analysis of Aircraft with High Aspect Ratio Flexible Wing by Using MSC/NASTRAN (MSC/NASTRAN을 활용한 고세장비 유연날개 항공기의 비행하중 해석)

  • Jang, Seyong;Kim, Sangyong;Kim, Youngyup;Cho, Changmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.657-664
    • /
    • 2013
  • The flight loads analysis was carried out on the aircraft with high aspect ratio flexible wings by using commercial software MSC/NASTRAN. The aerodynamic model for flight loads analysis was corrected, compared with results of the wind tunnel test. And in-house program was developed for pre and post works. In-house program enabling management of much data automatically consists of three modules: 'Construction of the mass distributed model', 'Selection of critical load cases', 'Generation of external loads for structural design'. By utilizing these techniques and programs, the procedure of flight loads analysis was established for effective development of an aircraft.

Decomposition Characteristics of Cyano-compounds in Non-thermal Packed-Bed-Plasma-Reactor (충전형 저온 플라즈마 반응기에서 시안 화합물의 분해 특성)

  • Ryu, Sam-Gon;Park, Myung-Kyu;Lee, Hae-Wan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.343-347
    • /
    • 2012
  • The decomposition behaviors of gaseous cyanides in non-thermal plasma-catalyst hybrid reactor have been investigated with the variation of discharge power, influent concentration of cyanide, humidity of air carrier and packed materials in the reactor. Destruction of cyanides by plasma only process was very difficult compared to that of trichloroethylene. But the destruction efficiencies of cyanides were dramatically improved through packing alumina or Pt/alumina bead in the plasma discharge region. From the results, it could be assumed that thermal catalytic effect is involved simultaneously with plasma in the reaction of cyanides destruction on the alumina or Pt/alumina packed plasma reactor.

Optimal Operation Condition of Pressurized Methanol Fuel Processor for Underwater Environment (수중환경용 가압형 메탄올 연료프로세서의 최적운전 연구)

  • JI, HYUNJIN;CHOI, EUNYEONG;LEE, JUNGHUN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.485-493
    • /
    • 2016
  • Recently submarine and unmanned underwater vehicle (UUV) are equipped with a fuel cell system as an air independent propulsion system. Methanol fuel processor can efficiently supply the hydrogen to the fuel cell system to improve the ability to dive. This study investigated the optimal conditions of the methanol fuel processor that may be used in the closed environment. For this purpose, the numerical model based on Gibbs minimization equation was established for steam reformer and three exhaust gas burners. After simulating the characteristics of steam reformer according to the steam-to-carbon ratio (SCR) and the pressure change, the SCR condition was able to narrow down to 1.1 to 1.5. Considering water consumption and the amount of heat recovered from three burners, the optimum condition of the SCR can be determined to be 1.5. Nevertheless, the additional heat supply is required to satisfy the heat balance of the methanol fuel processor in the SCR=1.5. In other to obtain additional amount of heat, the combustion of methanol is better than the increased of SCR in terms of system design.

Directed Energy Weapon System and Analysis on Effectiveness HPM Weapon (지향성 에너지 무기체계와 고출력 마이크로파 무기 효과도 분석)

  • Kim, Ilkyu;Kim, Moonsup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.935-940
    • /
    • 2016
  • Directed energy weapon enables to radiate the concentrated energy so as to result in distraction and overload of the target electronics. Analysis on effectiveness of weapon system can be important consideration in order to determine performance and design weapon system. In this paper, air defense weapon system, which is one of directed energy weapon system is studied. In order to analyze the effectiveness, the reflector antenna with high power circularly polarized horn antenna is designed, and power density in axial effective area is simulated and calculated using Friis formula. Through the study, the validity of antenna system is verified, and the effectiveness of directed energy weapon system on the target is evaluated.

A Study on Winter Season Usability Performance Improvement of Flapper Valve for KUH-1 (한국형 기동헬기 동계운용능력 향상을 위한 플래퍼밸브 개선연구)

  • Choi, Jae Hyung;Chang, In ki;Shim, Dai Sung;Ahn, Jeong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • Flapper Valve of Korean Utility Helicopter(KUH-1) is an essential equipment in Environmental Control System(ECS) for pilot to perform flight mission. It provides pilots and crews with heating, ventilating and air conditioning. It has function of maintaining room temperature to sustain operational capability for pilot and crew. This paper summarizes pilot comments in flight test which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test at low temperature.

Development of Variable Guide Vane Actuator System for Testing of Aircraft Gas Turbine Engine (항공용 가스터빈 리그시험용 가변정익 구동시스템 개발)

  • Kim, Sun Je;Jeong, Chi Hoon;Ki, Taeseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.9-17
    • /
    • 2019
  • Variable guide vanes(VGVs) that consist of link mechanisms and an actuator system are required for an aircraft gas turbine engine to adjust the incidence angle of stator vanes. In this study, we developed a VGV actuator system for three-stage VGVs with two hydraulic actuators. The requirements for the actuator system were derived by analyzing the link mechanisms and air loads, and a hydraulic power-pack was developed based on these requirements. Through a load test using the actuator test-rig and the application of synchronizing control logic with proper control gains, the actuator system could be developed and verified.

Study on Electromagnetic Testing for Surface-to-Air Missile system and Method for Test Complementation (대공유도무기체계의 전자기 시험 고찰 및 시험 보완 방법)

  • Young-jae Kim;Sang-hoon Koh;Dong-hyun Park;Seok-choo Han;Dae-hyun Lee;Jeong-woo An
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.456-463
    • /
    • 2022
  • The SAM(Surface-to-Air Missile) systems will be operated until disposing of it after production, the necessary test and evaluation should be performed during the development stage to ensure the operational performance after deployment. As development of technologies related to the electromagnetic wave field of missile system is required, so the verification of the electromagnetic environment has become more important. Therefore it is necessary to carefully review whether there are any weaknesses through the analysis of the SAM system when establishing the test and evaluation procedure. This paper describes the general electromagnetic test procedure for SAM system and discusses the matters that need to be supplemented. Also, methods for supplementation and review results were written.

Design of Dynamic Characteristics Adjustable Integrated Air Spring-Damper Mechanism for Dual Shock Generation System (동특성 가변형 에어스프링-댐퍼 일체 구조의 이중 충격 발생장치 설계)

  • Yeo, Sung Min;Shul, Chang Won;Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.331-341
    • /
    • 2018
  • This study proposes an integrated serial spring-damper mechanism as a dual pulse generation system. Compared to the traditional dual pulse generation system, which used multiple springs and a damper to generate a dual pulse critical for impact testing of naval equipments, currently used separated serial spring-damper mechanism is comprised of two components: an air spring, and a damper. The proposed mechanism combines the two components into one integrated system with a unique design that lets simply changing the volume and the pressure of the air tank, and the length of the annular pipe adjust the stiffness and damping constants for testing, eliminating the need to have multiple sets of air springs and dampers. Simulations using MatLab and Simulink were conducted to verify the feasibility of this design. The results show the potential of an integrated serial spring-damper mechanism as a more convenient and flexible mechanism for dual pulse generation system.