• Title/Summary/Keyword: air anode

Search Result 163, Processing Time 0.031 seconds

EXPERIMENTAL APPROACHES FOR WATER DISCHARGE CHARACTERISTICS IN PEMFC USING NEUTRON IMAGING TECHNIQUE AT CONRAD, HMI

  • Kim, Tae-Joo;Kim, Jong-Rok;Sim, Cheul-Muu;Lee, Sung-Ho;Son, Young-Jin;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.135-142
    • /
    • 2009
  • In this investigation, we prepared a 1 and 3-parallel serpentine single PEMFC, which has an active area of $100\;cm^2$ and a flow channel cross section of $1{\times}1mm$. Distribution and transport of water in a non-operating PEMFC were observed by varying flow types and the flow rates (250, 400, and 850 cc/min). This investigation was performed at the neutron imaging facility at the CO1d Neutron RAdiography facility (CONRAD), HMI, Germany of which the collimation ratio and neutron fluence rate are 250, $1{\times}10^{6}n/s/cm^2$, respectively. The neutron image was continuously recorded by a scintillator and lens-CCD coupled detector system every 10 seconds. It has been observed that although the distilled water was supplied into the cathode channel only, the neutron image showed a water movement from the cathode to the anode channel. The water at the cathode channel was completely discharged as soon as the pressurized air was supplied. But the water at the anode channel was not easily removed by the pressurized air except for the 3-parallel serpentine type with 850cc/min of air flow rate. Moreover, the water at the MEA wasn't removed for any of the cases.

Thickness Effect of ZnO Electron Transport Layers in Inverted Organic Solar Cells

  • Jang, Woong-Joo;Cho, Hyung-Koun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.377-377
    • /
    • 2011
  • Organic solar cells (OSCs) with low cost have been studied to apply on flexible substrate by solution process in low temperature [1]. In previous researches, conventional organic solar cell was composed of metal oxide anode, buffer layer such as PEDOT:PSS, photoactive layer, and metal cathode with low work function. In this structure, indium tin oxide (ITO) and Al was generally used as metal oxide anode and metal cathode, respectively. However, they showed poor reliability, because PEDOT:PSS was sensitive to moisture and air, and the low work function metal cathode was easily oxidized to air, resulting in decreased efficiency in half per day [2]. Inverted organic solar cells (IOSCs) using high work function metal and buffer layer replacing the PEDOT:PSS have focused as a solution in conventional organic solar cell. On the contrary to conventional OSCs, ZnO and TiO2 are required to be used as a buffer layer, since the ITO in IOSC is used as cathode to collect electrons and block holes. The ZnO is expected to be excellent electron transport layer (ETL), because the ZnO has the advantages of high electron mobility, stability in air, easy fabrication at room temperature, and UV absorption. In this study, the IOSCs based on poly [N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) : [6,6]-phenyl C71 butyric acid methyl ester (PC70BM) were fabricated with the ZnO electron-transport layer and MoO3 hole-transport layer. Thickness of the ZnO for electron-transport layer was controlled by rotation speed in spin-coating. The PCDTBT and PC70BM were mixed with a ratio of 1:2 as an active layer. As a result, the highest efficiency of 2.53% was achieved.

  • PDF

Effect of Air Flow Rate on the Performance of Planar Solid Oxide Fuel Cell using CFD (평판형 고체산화물 연료전지의 CFD 성능해석에서 공기유량변화의 영향)

  • Kim, Danbi;Han, Kyoungho;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.172-181
    • /
    • 2015
  • Solid Oxide Fuel Cells (SOFC) continue to be among the most promising alternative energy devices. This paper addresses i-V characteristics of SOFC with a focus on air flow rate along the planar anode electrodes. To address this, detailed Butler-Volmer kinetics are implemented in a general-purpose CFD code FLUENT. The numerical results were validated against experimental data from the literature showing excellent match with i-V polarization data ranging 1V-0.4V. Numerical calculations of fuel cell operation under different flow rare conditions were performed in three-dimensional geometries. Results are presented in terms of concentration distribution of hydrogen, oxygen, and water. The simulations and results indicate that advanced CFD with UDF(User-Defined Function) of Butler-Volmer kinetics can be used to identify the conditions leading to air flow rate and specific surface area and guide development of operating conditions and improve the fuel cell system performance.

Effect of Cathodic Biofilm on the Performance of Air-Cathode Single Chamber Microbial Fuel Cells

  • Ahmed, Jalal;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3726-3729
    • /
    • 2011
  • Biofilm formation is inevitable in a bioelectrochemical system in which microorganisms act as a sole biocatalyst. Cathodic biofilm (CBF) works as a double-edged sword in the performance of the air-cathode microbial fuel cells (MFCs). Proton and oxygen crossover through the CBF are limited by the robust structure of extracellular polymeric substances, composition of available constituents and environmental condition from which the biofilm is formed. The MFC performance in terms of power, current and coulombic efficiency is influenced by the nature and origin of CBF. Development of CBF from different ecological environment while keeping the same anode inoculums, contributes additional charge transfer resistance to the total internal resistance, with increase in coulombic efficiency at the expense of power reduction. This study demonstrates that MFC operation conditions need to be optimized on the choice of initial inoculum medium that leads to the biofilm formation on the air cathode.

Performance Characteristics Analysis of Gas Turbine-Pressurized SOFC Hybrid Systems (가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석)

  • 양원준;김동섭;김재환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.615-622
    • /
    • 2004
  • Recently, the hybrid system combining fuel cell and gas turbine has drawn much attention owing to its high efficiency and ultra low emission. It is now on the verge of world wide development and various system configurations have been proposed. A national project funded by Korean government has also been initiated to develop a pressurized hybrid system. This work aims at presenting design performance analysis for various possible system configurations as an initial step for the system development. Study focuses are given to major design options including the power ratio between gas turbine and fuel cell, reforming method (internal or external), reforming heat source (reforming burner, cathode hot air, fuel cell heat release) and steam supply method for reformer (anode gas recirculation, external steam generator). A wide variation in performance among different configurations has been predicted.

Various Alcohols as Electrolysis Suppressants in Zn-air Secondary Batteries

  • Yang, Soyoung;Kim, Ketack
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.339-344
    • /
    • 2018
  • The gelling agent used in Zn-air cells plays a role in improving battery life. It prevents the evaporation of water and diffusion of $Zn^{2+}$ ions away from the current collector. Additional functionality was incorporated by replacing some of the gelling agents with new materials. Alcohols with moderate viscosity, namely maltose, sucrose, poly ethylene glycol 600, and 2-hydroxyethyl cellulose, were used to replace some gelling agents in this work. Among these alcohols, poly ethylene glycol 600 and 2-hydroxyethyl cellulose improved the cycle life of full cells. This improved cycle life was attributed to the inhibition of water electrolysis and the improved cycle life of the anode.

Development of Anode-supported Planar SOFC with Large Area by tape Casting Method (테입캐스팅을 이용한 대면적 (100 cm2) 연료극 지지체식 평판형 고체산화물 연료전지의 개발)

  • Yu, Seung-Ho;Song, Keun-Suk;Song, Hee-Jung;Kim, Jong-Hee;Song, Rak-Hyun;Jung, Doo-Hwan;Peck, Dong-Hyun;Shin, Dong-Ryul
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • For the development of low temperature anode-supported planar solid oxide fuel cell, the planar anode supports with the thickness of 0.8 to 1 mm and the area of 25, 100 and $150\;cm^2$ were fabricated by the tape casting method. The strength, porosity, gas permeability and electrical conductivity of the planar anode support were measured. The porosity of anode supports sintered at $1400^{\circ}C$ and then reduced in$H_2$ atmosphere was increased from $45.8\%\;to\;53.9\%$. The electrical conductivity of the anode support was $900 S/cm\;at\; 850^{\circ}C$ and its gas permeability was 6l/min at 1 atm in air atmosphere. The electrolyte layer and cathode layer were fabricated by slurry dip coating method and then had examined the thickness of $10{\mu}m$ and the gas permeability of 2.5 ml/min at 3 atm in air atmosphere. As preliminary experiment, cathode multi-layered structure consists of LSM-YSZ/LSM/LSCF. At single cell test using the electrolyte layer with thickness of 20 to $30{\mu}m$, we achieved $300\;mA/cm^2$ and 0.6V at $750^{\circ}C$

The Development of Cylinder Shaped Air-breathing PEMFC (원통형 자연대류 방식 PEMFC 개발)

  • Lee, Kang-In;Lee, Se-Won;Park, Min-Soo;Chu, Chong-Nam
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.2
    • /
    • pp.125-132
    • /
    • 2009
  • Cylinder shaped air-breathing PEMFC has been developed to have small volume, low contact resistance and better air accessibility to the open cathode. This cylinder shaped design consists of an anode cylinder with helical flow channel and a cathode current collector with slits. The pressure distribution measurement according to the shapes was performed. The test result indicated that cylinder shaped fuel cell has better pressure distribution compared with the planar shaped fuel cell. The better pressure distribution was connected to the higher performance. The maximum power density of cylinder shaped fuel cell was about 20% higher than the planar shaped fuel cell. The maximum power density of the developed cylinder shaped air-breathing PEMFC with dry hydrogen was $220\;mW/cm^2$ and with humidified hydrogen was $293\;mW/cm^2$.

Preparation and Characteristics of High Performance Cathode for Anode-Supported Solid Oxide Fuel Cell (연료극 지지체식 고체산화물 연료전지용 고성능 공기극 제조 및 특성 연구)

  • Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-93
    • /
    • 2005
  • Anode-supported solid oxide fuel cell (SOFC) was investigated to increase the cell power density at intermediate temperature through control of the cathode structure. The anode-supported SOFC cell were fabricated by wet process, in which the electrolyte of $8mol\%\;Y_2O_3-stabilized\;ZrO_2 (YSZ)$ was coated on the surface of anode support of Ni/YSA and then the cathode was coated. The cathode has two- or three- layered structure composed of $(La_{0.85}Sr_{0.15})_{0.9}MnO_{3-x}(LSM),\;LSM/YS$ composite (LY), and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3{LSCF)$ with different thickness. Their single cells with different cathode structures were characterized by measuring the cell performance and ac impedance in the temperature range of 600 to $800^{\circ}C$ in humidified hydrogen with $3\%$ water and air. The cell with $LY\;9{\mu}m/LSM\;9{\mu}m/LSCF\;17{\mu}m$ showed best performance of $590mW/cm^2$, which was attributed to low polarization resistance due to LY and to low interfacial resistance due to LSCF.

Fabrication and Performance of Anode-Supported Flat Tubular Solid Oxide Fuel Cell Unit Bundle (연료극 지지체식 평관형 고체산화물 연료전지 단위 번들의 제조 및 성능)

  • Lim, Tak-Hyoung;Kim, Gwan-Yeong;Park, Jae-Layng;Lee, Seung-Bok;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.283-287
    • /
    • 2007
  • KIER has been developing the anode-supported flat tubular solid oxide fuel cell unit bundle for the intermediate temperature($700{\sim}800^{\circ}C$) operation. Anode-supported flat tubular cells have Ni/YSZ cermet anode support, 8 moi.% $Y_2O_3$ stabilized $ZrO_2(YSZ)$ thin electrolyte, and cathode multi-layer composed of Sr-doped $LaSrMnO_3(LSM)$, LSM-YSZ composite, and $LaSrCoFeO_3(LSCF)$. The prepared anode-supported flat tubular cell was joined with ferritic stainless steel cap by induction brazing process. Current collection for the cathode was achieved by winding Ag wire and $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ paste, while current collection for the anode was achieved by using Ni wire and felt. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90\;cm^2$ connected in series with 12 unit bundles, in which unit bundle consists of two cells connected in parallel. The performance of unit bundle in 3% humidified $H_2$ and air at $800^{\circ}C$ shows maximum power density of $0.39\;W/cm^2$ (@ 0.7V). Through these experiments, we obtained basic technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular cell unit bundle.