DOI QR코드

DOI QR Code

Various Alcohols as Electrolysis Suppressants in Zn-air Secondary Batteries

  • Yang, Soyoung (Department of Chemistry and Energy Engineering Sangmyung University) ;
  • Kim, Ketack (Department of Chemistry and Energy Engineering Sangmyung University)
  • Received : 2018.03.06
  • Accepted : 2018.08.10
  • Published : 2018.12.31

Abstract

The gelling agent used in Zn-air cells plays a role in improving battery life. It prevents the evaporation of water and diffusion of $Zn^{2+}$ ions away from the current collector. Additional functionality was incorporated by replacing some of the gelling agents with new materials. Alcohols with moderate viscosity, namely maltose, sucrose, poly ethylene glycol 600, and 2-hydroxyethyl cellulose, were used to replace some gelling agents in this work. Among these alcohols, poly ethylene glycol 600 and 2-hydroxyethyl cellulose improved the cycle life of full cells. This improved cycle life was attributed to the inhibition of water electrolysis and the improved cycle life of the anode.

Keywords

References

  1. E. Deiss, F. Holzer, O. Haas, Electrochim. Acta, 2002, 47(25), 3995-4010. https://doi.org/10.1016/S0013-4686(02)00316-X
  2. T. Cohen-Hyams, Y. Ziengerman, Y. Ein-Eli, J. Power Sources, 2006, 157(1), 584-591. https://doi.org/10.1016/j.jpowsour.2005.07.090
  3. J. Lee, B. Hwang, M.-S. Park, K. Kim, Electrochim. Acta, 2016, 199, 164-171. https://doi.org/10.1016/j.electacta.2016.03.148
  4. P. Sapkota, H. Kim, J. Ind. Eng. Chem., 2009, 15(4), 445-450. https://doi.org/10.1016/j.jiec.2009.01.002
  5. J. Dobryszycki, S. Biallozor, Corros. Sci., 2001, 43(7), 1309-1319. https://doi.org/10.1016/S0010-938X(00)00155-4
  6. Y.-C. Chang, G. Prentice, J. Electrochem. Soc., 1984, 131(7), 1465-1468. https://doi.org/10.1149/1.2115875
  7. Y. Jin, F. Chen, Y. Lei, X. Wu, ChemCatChem, 2015, 7(15), 2377-2383. https://doi.org/10.1002/cctc.201500228
  8. R. Renuka, L. Srinivasan, S. Ramamurthy, A. Veluchamy, N. Venkatakrishnan, J. Appl. Electrochem., 2001, 31(6), 655-661. https://doi.org/10.1023/A:1017562514934
  9. H. Yang, J. Power Sources, 2004, 128(1), 97-101. https://doi.org/10.1016/j.jpowsour.2003.09.050
  10. L. Zhou, D. Zhou, W. Gan, Z. Zhang, Ionics, 2017, 23(12), 3469-3477. https://doi.org/10.1007/s11581-017-2150-6
  11. M. Liang, H. Zhou, Q. Huang, S. Hu, W. Li, J. Appl. Electrochem., 2011, 41(8), 991-997. https://doi.org/10.1007/s10800-011-0328-6
  12. C.W. Lee, K. Sathiyanarayanan, S.W. Eom, M.S. Yun, J. Power Sources, 2006, 160(2), 1436-1441. https://doi.org/10.1016/j.jpowsour.2006.02.019
  13. M. Deyab, J. Power Sources, 2015, 280, 190-194. https://doi.org/10.1016/j.jpowsour.2015.01.107
  14. B. Hwang, E.-S. Oh, K. Kim, Electrochim. Acta, 2016, 216, 484-489. https://doi.org/10.1016/j.electacta.2016.09.056
  15. B. Li, X.M. Ge, F.W.T. Goh, T.S.A. Hor, D.S. Geng, G.J. Du, Z.L. Liu, J. Zhang, X.G. Liu, Y. Zong, Nanoscale, 2015, 7(5), 1830-1838. https://doi.org/10.1039/C4NR05988C
  16. K. Lopez, G. Park, H.J. Sun, J.C. An, S. Eom, J. Shim, J. Appl. Electrochem., 2015, 45(4), 313-323. https://doi.org/10.1007/s10800-015-0798-z
  17. R. Rathika, O. Padmaraj, S.A. Suthanthiraraj, Ionics, 2018, 24(1), 243-255. https://doi.org/10.1007/s11581-017-2175-x
  18. H.J. Hwang, W.S. Chi, O. Kwon, J.G. Lee, J.H. Kim, Y.G. Shul, ACS Appl. Mater. Inter., 2016, 8(39), 26298-26308. https://doi.org/10.1021/acsami.6b07841