DOI QR코드

DOI QR Code

Preparation and Characteristics of High Performance Cathode for Anode-Supported Solid Oxide Fuel Cell

연료극 지지체식 고체산화물 연료전지용 고성능 공기극 제조 및 특성 연구

  • Song, Rak-Hyun (Advanced Fuel Cell Research Center, Hydrogen Fuel Cells Research Department, Korea Institute of Energy Research)
  • 송락현 (한국에너지기술연구원 수소연료전지연구부 신연료전지연구센터)
  • Published : 2005.05.01

Abstract

Anode-supported solid oxide fuel cell (SOFC) was investigated to increase the cell power density at intermediate temperature through control of the cathode structure. The anode-supported SOFC cell were fabricated by wet process, in which the electrolyte of $8mol\%\;Y_2O_3-stabilized\;ZrO_2 (YSZ)$ was coated on the surface of anode support of Ni/YSA and then the cathode was coated. The cathode has two- or three- layered structure composed of $(La_{0.85}Sr_{0.15})_{0.9}MnO_{3-x}(LSM),\;LSM/YS$ composite (LY), and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3{LSCF)$ with different thickness. Their single cells with different cathode structures were characterized by measuring the cell performance and ac impedance in the temperature range of 600 to $800^{\circ}C$ in humidified hydrogen with $3\%$ water and air. The cell with $LY\;9{\mu}m/LSM\;9{\mu}m/LSCF\;17{\mu}m$ showed best performance of $590mW/cm^2$, which was attributed to low polarization resistance due to LY and to low interfacial resistance due to LSCF.

고체산화물 연료전지의 작동온도를 낮추고 셀의 출력 밀도를 향상시키기 위해 연료극 지지체식 셀을 제조하고 공기극의 구조를 개선시켜 그 특성을 조사 분석하였다. 셀 제조는 습식법에 의해 이루어졌으며, 제조된 연료극 지지체상에 전해질을 코팅하고 최종적으로 공기극을 코팅하였다. 제조된 셀은 $8mol\%\;V_2O_3$로 안정화된 $ZrO_2(YSZ)$ 전해질 층 및 Ni/YSZ 연료극 지지체로 이루어졌으며, 공기극은 $(La_{0.85}Sr_{0.15})_{0.9}MnO_{3-x}(LSM),\;LSM/YSZ(LY)$ 복합체, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3{LSCF)$를 두층 또는 3층으로 두께를 변화시키면서 코팅하였다 임피던스로 전기화학적 특성을 조사하였으며, $3\%$수분을 함유한 수소와 공기로 $800^{\circ}C$ 이하에서 단전지의 성능을 평가하였다 작동온도 $800^{\circ}C$에서, $LY\;9{\mu}m/LSM\;9{\mu}m/LSCF\;17{\mu}m$의 다층이 코팅된 전지가 $590mW/cm^2$로 가장 좋은 성능을 나타냈으며, $0.244{\Omega}cm^2$로 가장 작은 분극저항을 가졌다. 측정된 임피던스 결과, 공기극의 분극저항이 3층 코팅된 셀의 경우 가장 작게 나타났음을 확인하였으며, 이것은 LY복합전극에 의한 전극 계면 저항 감소뿐 만 아니라 LSCF에 의한 공기극의 산소환원 반응의 전하이동 저항이 감소하였기 때문인 것으로 해석된다.

Keywords

References

  1. J. H. Hirschenhofer, D. B. Stauffer, R. R. Engleman, and M. G. Klett, Fuel Cell Hand Book(DOE/FETC-99/1076), National Technical Information Service (1998)
  2. N. Q. Minh and Takehiko, 'Science and Technology of Ceramic Fuel Cell', Elsevier Science (1995)
  3. R.-H. Song, T. Horita, N. Sakai, T. Kawada, H. Yokokawa and M. Dokiya, 'Fabrication of Planar Solid Oxide Fuel Cell by Composite Plate Process,' Denki Kagaku, 64, 614-19 (1996)
  4. T. Iwata, 'Characterization of Ni-YSZ Anode Degradation for Substrate-Type Solid Oxide Fuel Cells,' J. Electrochem. Soc., 143(5), 1521-1525 (1996) https://doi.org/10.1149/1.1836673
  5. Y. C. Hsiao and J. R. Selman, 'The degradation of SOFC electrodes,' Solid State lonics, 98, 33-38 (1997) https://doi.org/10.1016/S0167-2738(97)00106-9
  6. M. J. L. Stergard, C. Clausen, C. Bagger and M. Mogensen, 'Manganite-zirconia composite cathodes for SOFC: Influence of structure and composition,' Electrochimica Acta, 40(12), 1971-1981 (1995) https://doi.org/10.1016/0013-4686(94)00332-U
  7. C. Clausen, C. Bagger, J. B. Bilde-Sensen, and A. Horsewell, 'Microstructural and microchemical characterization of the interface between $La_{0.85}Sr_{0.15}MnO_3$ and Y_2O_3-stabilized $ZrO_2$,' Solid State lonics, 70-71, 59-64 (1994) https://doi.org/10.1016/0167-2738(94)90287-9
  8. T. Kenjo and M. Nishiya, '$LaMnO_3$ air cathodes containing $ZrO_2$ electrolyte for high temperature solid oxide fuel cells,' Solid State lonics, 57, 295-302 (1992) https://doi.org/10.1016/0167-2738(92)90161-H
  9. E. Siebert, A. Hammouche, and M. Kleitz, 'Impedance spectroscopy analysis of $La_{1-x}Sr_xMnO_3$-yttria-stabilized zirconia electrode kinetics,' Electrochimica Acta, 40(11), 1741-1753 (1995) https://doi.org/10.1016/0013-4686(94)00361-4
  10. M. J. J.ogensen, S. Primdahl, C. Bagger and M. Mogensen, 'Effect of sintering temperature on microstructure and performance of LSM-YSZ composite cathodes,' Solid State lonics, 139 1-11 (2001) https://doi.org/10.1016/S0167-2738(00)00818-3
  11. J. H. Choi, J. H. Jang, S. M. Oh, 'Microstructure and cathodic performance of $La_{0.9}Sr_{0.1}MnO_3$/yttria-stabilized zirconia composite electrodes,' Electrochimica Acta, 46(6), 867-874 (2000) https://doi.org/10.1016/S0013-4686(00)00666-6
  12. J. D. Kim, G D. Kim, and Ki-Tae Lee, 'Oxygen Reduction Mechanism and Electrode Properties of (La, Sr)$MnO_3$-YSZ Composite Cathode for Solid Oxide Fuel Cell (Part I : Oxygen Reduction Mechanism),' J. Kor. Cerm. Soc., 38(1), 84-92 (2001)
  13. J. D. Kim, G D. Kim, and Ki-Tae Lee, 'Oxygen Reduction Mechanism and Electrode Properties of (La, Sr)$MnO_3$-YSZ Composite Cathode for Solid Oxide Fuel Cell (Part II : Electrode Properties),' J. Kor. Cerm. Soc., 38(1), 93-99 (2001)
  14. A. Mineshige, J. lzutsu, M. Nakamura, K. Nigaki, J. Abe, M. Kobune, S. Fujii, T. Yazawa, 'Introduction of A-site deficiency into $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$.' and its effect on structure and conductivity,' Solid State Ionics, 176, 1145-49 (2005) https://doi.org/10.1016/j.ssi.2004.11.021
  15. W. G Wang, M. Mogensen, 'High-performance lanthanum-ferritebased cathode for SOFC,' Solid State Ionics, 176,457-462 (2005) https://doi.org/10.1016/j.ssi.2004.09.007
  16. A. Esquirol, N. P. Brandon, J. A. Kilner, and M. Mogensen, 'Electrochemical Characterization of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ Cathodes for Intermediate-Temperature SOFCs,' J. Electrochem. Soc., 151(11), A1847-A1855 (2004) https://doi.org/10.1149/1.1799391
  17. E. Maguire, B. Gharbage, F. M. B. Marques, and J. A. Labrincha, 'Cathode materials for intermediate temperature SOFCs,' Solid State Ionics, 127, 329-335 (2000) https://doi.org/10.1016/S0167-2738(99)00286-6
  18. C. C. Chen, M .M. Nasrallah, H. U. Anderson, and M.A. Alim, 'Immittance Response of $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ Based Electrochemical Cells,' J. Electrochem. Soc., 142(2),491-496 (1995) https://doi.org/10.1149/1.2044082
  19. F. W. Poulsen, and N. van der Puil, 'Phase relations and conductivity of Sr- and La-zirconates,' Solid State lonics, 53-56, 777-783 (1992) https://doi.org/10.1016/0167-2738(92)90254-M
  20. J. W. Stevenson, T. R. Armstrong, R. D. Cameim, L. R. Pederson, W. J. Weber, 'Electrochemical Properties of Mixed Conducting Perovskites $La_{1-x}M_xCo_{1-y}Fe_yO_{3-{\delta}}$(M=Sc,Ba,Ca),' J. Electrochem. Soc., 143(9), 2722-2730 (1996) https://doi.org/10.1149/1.1837098
  21. K. Huang, M. Feng and J.B. Goodenourh, 'Synthesis and Electrical Properties of Dense $Ce_{0.9}Gd_{0.1}O_{1.95}$ Ceramics,' J. Am. Ceram. Soc., 81, 357-362 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02341.x
  22. H. Yokokawa and T. Horita, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Eds. S. C. Singhal and K. Kendall, Elsevier, pp 119-147 (2003)