• 제목/요약/키워드: agricultural non-point sources

검색결과 66건 처리시간 0.025초

새만금 유역 농업비점오염원 관리를 위한 우선지구 선정연구 (A Study on Evaluation of Target Region for the Agricultural Non-point Sources Management)

  • 장남정;김보국;임승현;김태균
    • 대한환경공학회지
    • /
    • 제34권1호
    • /
    • pp.23-31
    • /
    • 2012
  • 새만금 유역은 BOD와 TP의 비점오염배출 비중이 각각 68.4와 61.4% (2009년 기준)로 점오염원에 비해 높게 나타나므로 새만금 수질관리를 위해서는 비점오염원에 대한 대책수립이 시급하다. 본 연구에서는 새만금 유역 최적관리기법 대상지 선정을 위해 비점오염원의 영향이 큰 농업지역을 중심으로, 그리고 부영양화에 주요인자인 총인(TP)을 기준으로 농업비점오염대책 우선지구를 선정하고자 하였다. 우선지구 선정방안은 의사결정에 의한 오염영향 지수를 이용한 정성분석 방법으로 수계에 비점오염원(TP기준)이 작용하는 단계를 크게 발생, 배출, 유출 관련지표로 구분하여 비점오염원 영향지수(NPSI; Non-point Source Index)를 산정하였으며, 전문가 AHP (Analytic Hierarchy Process)분석을 통해 지표의 가중치를 결정하였다. NPSI 산정에는 행정구역 745개의 동리단위 기준으로 비점발생특성(해당 지역의 액비살포 면적, 축사 면적, 논면적, 밭면적, 인산질 비료사용량), 비점배출특성(수질오염 총량관리제의 축산계 비점오염원 배출부하량, 토지계 배출부하량), 비점유출특성(토양유실량, 불투수율, 유출곡선지수, 유달거리, 유효강우비)의 총 12개의 지표가 적용되었다. GIS (Geographical Information System) 분석을 이용한 NPSI 산정결과 새만금 유역 농업비점관리지역 우선지구 후보지로 만경강 5지점과 동진강 5지점을 선정하였다. 우선지구 후보지의 선정원인은 주로 축산에서 기인한 것으로 나타났으며, 이는 AHP 분석결과 축산관련 지표의 가중치가 높았기 때문으로 사료된다.

토지피복지도를 활용한 농업비점오염원 오염부하량 산정에 관한 연구 (Method for Calculating the Pollution Load Amount of Agricultural Non-Point Sources Using Land Cover Map)

  • 유지은;김윤지;성현찬;이경일;최지용;전성우
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1249-1260
    • /
    • 2020
  • Non-point source pollutants have characteristics the render them difficult to manage owing to the uncertainty of flow paths. As agricultural non-point sources account for more than 57% of non-point source pollutants, the necessity for management is increasing. This study examines the possibility of utilizing land cover maps to suggest a more appropriate method of setting management priority for agricultural non-point sources in the Daecheong Lake area and draws implications by comparing the results derived using the cadastral map, as mentioned in the TMDL Basic Policy. To define the prioritized areas for management, the pollution load was calculated for each subbasin using the formula from the TMDL technical guidelines. As a result, the difference in the average pollution load between the land cover map and cadastral map ranged from 11.6% to 21% among the subbasins. In almost all subbasins, there were differences in the ranking of management priorities depending on the land information that was used. In addition, it was found that it was reasonable to use the level 3 land cover map to calculate the load generated by the land system for examining the implementation goals and methods of each data and comparing them with satellite images.

GIS를 활용한 영산호 수계 오염원 데이터베이스 구축과 오염원관리 사용자 인터페이스 (Database and User Interface for Pollutant Source and Load Management of Yeungsan Estuarine Lake Watershed Using GIS)

  • 양홍모
    • 한국조경학회지
    • /
    • 제28권6호
    • /
    • pp.114-126
    • /
    • 2001
  • The purpose of this study is to establish the databases of pollutant sources and water quality measurement data by utilizing GIS, and making the user interface for the management of pollutant sources. Yeongsan Estuarine Lake was formed of a huge levee of 4.35 km constructed by an agricultural reclamation project. Water quality of the reservoir has been degraded gradually, which mainly attributes to increase of point and non-point source pollutant loads from the lake's watershed of 33,374.3 $\textrm{km}^2$ into it. Application of GIS to establishment of the database was researched of pint source such as domestic sewage, industrial wastewater, farm wastes, and fishery wastes, and non-pont source such as residence, rice and upland field, and forest runoffs of the watershed of the lake. NT Acr/Info and ArcView were mainly utilized for the database formation. Land use of the watershed using LANDSAT image data was analyzed for non-point source pollutant load estimation. Pollutant loads from the watershed into the reservoir were calculated using the GIS database and BOD, TN, TP load units of point and non-point sources. Total BOD, TN, TP loads into it reached approximately to 141, 715, 2,094 and 4,743 kg/day respectively. The loads can be used as input parameters for water quality predicting model of it. A user-friendly interface program was developed using Dialog Designer and Avenue Script of AcrView, which can perform spatial analysis of point and non-point sources, calculate pollutant inputs from the sources, update attribute data of them, delete and add point sources, identify locations and volumes of water treatment facilities, and examine water quality data of water sampling points.

  • PDF

INTEGRATED WATER RESOURCES AND QUALITY MANAGEMENT SYSTEM USING GIS/RS TECHNOLOGIES

  • Shim, Kyu-Cheoul;Shim, Soon-Bo;Lee, Yo-Sang
    • Water Engineering Research
    • /
    • 제3권2호
    • /
    • pp.85-92
    • /
    • 2002
  • There has been continuous efforts to manage water resources for the required water quality criterion at river channel in Korea. However, we could obtain the partial improvement only for the point sources such as, waste waters from urban and factory site through the water quality management. Therefore, it is strongly needed that the best management practice throughout the river basin fur water quality management including non-point sources pollutant loads. This problem should be resolved by recognizing the non-point sources pollutant loads from the upstream river basin to the outlet of the basin depends on the landuse and soil type characteristics of the river basin using the computer simulation by a distributed model based on the detailed investigation and application of Geographic Information System (GIS). The purpose of this study is consisted of the three major distributions, which are the investigation of spread non-point sources pollutants throughout the river basin, development of the base maps to represent and interpret the input and outputs of the distributed simulation model, and prediction of non-point sources pollutant loads at the outlet of a up-stream river basin using Agricultural Non-Point Sources Model (AGNPS). For the validation purpose, the Seom-Jin River basin was selected with two flood events in 1998. The results of this application showed that the use of combined a distributed model and an application of GIS was very effective fur the best water resources and quality management practice throughout the river basin

  • PDF

Loads of Nitrogen and Phosphorus from the Agricultural Watershed in Central Korea

  • Cho, Jae-Young;Han, Kang-Wan;Choi, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.254-257
    • /
    • 2000
  • Water quality monitoring network was established at the agricultural watershed located at the Namdae-chon watershed of Seolchon-myon, Muju-gun, Chollabuk-do, Korea which is 22,560 ha in size. Based on total amount of stream flow loads of nitrogen and phosphorus from the agricultural watershed were estimated. About 4.48 (1,011 ha), 7.02 (1,585 ha), and 86.82% (19,609 ha) of the site were used for paddy fields, upland fields, and forests, respectively. During the period of 6 months from May 1 to October 31, 1999, the total amounts of precipitation and stream flow were 993.2 mm and $148,533,000m^3$ respectively. The loads of agricultural non-point sources accrued by land use were 83,526 kg, 24,508 kg, 49,705 kg, and 215 kg for total-N, ammonia-N, nitrate-N, and total-P, respectively. Results showed that 23.4 and 0.1 % of the applied nitrogen and phosphorus fertilizers, respectively, were estimated to load into the streams as agricultural non-point sources.

  • PDF

NON-POINT SOURCE POLLUTANT MODELING IN USING GIS ASSESSMENT IN STREAM NETWORK AND THE IRRIGATION REGION

  • Ju-Young;Kutty Arvind
    • Water Engineering Research
    • /
    • 제5권3호
    • /
    • pp.147-156
    • /
    • 2004
  • Recently, the population growth, industrial and agricultural development are rapidly undergoing in the Lower Rio Grande Valley (LRGV) in Texas. The Lower Rio Grande Valley (LRGV) composed of the 4 counties and three of them are interesting for Non-point and point source pollutant modeling: Starr, Cameron, and Hidalgo. Especially, the LRGV is an intensively irrigation region, and Texas A&M University Agriculture Program and the New Mexico State University College of Agriculture applied irrigation district program (Guy Fipps and Craig Pope, 1998), projects in GIS and Hydrology based agricultural water management systems and assessment of prioritized protecting stream network, water quality and rehabilitation based on water saving potential in Rio Grande River. In the LRGV region, where point and non-point sources of pollution may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to determine the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern with water quality related to pesticides, fertilizer, and nutrients within LRGV region. The GIS technique is widely used and developed for the assessment of non-point source pollution in LRGV region. This project shows the losses in kg/$km^2$/year of BOD (Biological Oxygen Demand), TN (total Nitrogen) and TP (total phosphorus) in the runoff from the surface of LRGV.

  • PDF

관개기 곡간지 유역 필지논에서의 비점원오염물질 유출특성 (Characteristics of Non-Point Sources Pollutant Loads at Paddy Plot Located at the Valley Watershed during Irrigation Periods)

  • 한국헌
    • 한국관개배수논문집
    • /
    • 제18권1호
    • /
    • pp.94-102
    • /
    • 2011
  • The aim of this study was to evaluate the load of non-point sources pollutant at a paddy plot located at the valley watershed during irrigation period. Irrigation, runoff and water quality data in the paddy plot were analyzed periodically from June 1 to October 31 in 2005. The observed amount of precipitation, irrigation, runoff for the experimental paddy plot during the irrigation period was 1,297.8, 223.2, and 825.4mm, respectively. Total-N concentrations ranged from 3.73 to 18.10mg/L, which was generally higher than the quality standard of agricultural water (1.0mg/L). Total-P concentrations ranged from 0.111 to 0.243mg/L and the average was 0.139mg/L. The observed runoff pollutants loadings from the paddy plot were measured as 34.4 kg/ha for T-N, 1.0 kg/ha for T-P and 213.8 kg/ha for SS. The non-point sources pollutant load in drainage water depends on rainfall and surface drainage water amount from the paddy plot. We are considering that these results were affected by rainfall as well as hydrological condition, soil management, whether or not fertilizer application, cropping, rice straw and plowing.

  • PDF

ASSESSMENT AND CONTROL OF TOTAL NUTRIENT LOADS IN WATERSHED AND STREAM NETWORK IN SOUTH-WEST TEXAS

  • Lee, Ju-Young;Choi, Jae-Young
    • Water Engineering Research
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, the population growth and agricultural development are rapidly undergoing in the South-West Texas. The junction of three river basins such as Lavaca river basin, Colorado-Lavaca Coastal basin and Lavaca-Guadalupe Coastal basin, are interesting for non-point and point source pollutant modeling: Especially, the 2 basins are an intensively agricultural region (Colorado-Lavaca Coastal/Lavaca-Guadalupe Coastal basins) and several cities are rapidly extended. In case of the Lavaca river basin, there are many range land. Several habitat types wide-spread over three relatively larger basins and five wastewater discharge regions are located in there. There are different hazardous substances which have been released. Total nutrient loads are composed of land surface load and river load as Non-point source and discharge from wastewater facilities as point source. In 3 basins region, where point and non-point sources of poll Jtion may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to how to assess and control the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern as non-point source with water quality related to pesticides, fertilizer, and nutrients and as point source with wasterwater discharge from cities. The GIS technique has been developed to aid in the point and non-point source analysis of impacts to natural resource within watershed. This project shows the losses in $kg/km^2/year$ of BOD (Biological Oxygen Demand), TN (Total Nitrogen) and TP (Total Phosphorus) in the runoff from the surface of 3 basins. In the next paper, sediment contamination will show how to evaluate in Estuarine habitats of these downstream.

  • PDF

계절예측 정보 기반 APEX-Paddy 모형 적용성 평가 (Evaluation of Applicability of APEX-Paddy Model based on Seasonal Forecast)

  • 조재필;최순군;황세운;박지훈
    • 농촌계획
    • /
    • 제24권4호
    • /
    • pp.99-119
    • /
    • 2018
  • Unit load factor, which is used for the quantification of non-point pollution in watersheds, has the limitation that it does not reflect spatial characteristics of soil, topography and temporal change due to the interannual or seasonal variability of precipitation. Therefore, we developed the method to estimate a watershed-scale non-point pollutant load using seasonal forecast data that forecast changes of precipitation up to 6 months from present time for watershed-scale water quality management. To establish a preemptive countermeasure against non-point pollution sources, it is possible to consider the unstructured management plan which is possible over several months timescale. Notably, it is possible to apply various management methods such as control of sowing and irrigation timing, control of irrigation through water management, and control of fertilizer through fertilization management. In this study, APEX-Paddy model, which can consider the farming method in field scale, was applied to evaluate the applicability of seasonal forecast data. It was confirmed that the rainfall amount during the growing season is an essential factor in the non-point pollution pollutant load. The APEX-Paddy model for quantifying non-point pollution according to various farming methods in paddy fields simulated similarly the annual variation tendency of TN and TP pollutant loads in rice paddies but showed a tendency to underestimate load quantitatively.