• Title/Summary/Keyword: agricultural non-point source

Search Result 175, Processing Time 0.026 seconds

Characteristics of Non-point Source Pollutants Runoff from Agricultural and Industrial Areas in Lake Sihwa Watershed (강우시 시화호 농촌 및 공단유역의 비점오염물질 유출특성)

  • Kim, Sea-won;Choi, Kwangsoon;Kim, Dong-sup;Lee, Mikyung
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.768-777
    • /
    • 2009
  • The characteristics of stormwater runoff was examined on distinct types of agricultural and industrial area in Lake Sihwa watershed. During rainfall event, the peak concentrations of SS, $COD_{Mn}$, and TP were observed after 6~11 hours of rainfall in agricultural areas. Whereas, the peak concentrations occurred within the first one hour after rainfall and then the highest concentration of NPS pollutants sharply decreased, showing strong first flush effect in industrial areas. The strong first flush effect of suspended solid was apparent in agricultural areas, while those of organic matters and nutrients were clear in industrial areas. The cumulative load curves for NPS pollutants showed above the $45^{\circ}$ straight line, indicating that first flush effect occurred in industrial areas. The mean SS EMC values of agricultural areas ranged from 60~598 mg/L (Avg. 285 mg/L), it was higher value when compare to other areas. While the mean $COD_{Mn}$, TN, and TP EMCs values of industrial areas were shown the highest values as 67.7 mg/L, 12.1 mg/L and 2.1 mg/L respectively.

HSPF and SWAT Modelling for Identifying Runoff Reduction Effect of Nonpoint Source Pollution by Rice Straw Mulching on Upland Crops (볏짚 피복에 의한 밭 비점오염원 유출저감효과 분석을 위한 HSPF와 SWAT 모델링)

  • Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon;Yang, Hee Jeong;Lee, Hyung Jin;Park, Geun Ae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.47-57
    • /
    • 2013
  • This study is to assess the reduction of non-point source pollution loads for rice straw mulching of upland crop cultivation at a watershed scale. For Byulmi-cheon watershed (1.21 $km^2$) located in the upstream of Gyeongan-cheon, the HSPF (Hydrological Simulation Program-Fortran) and SWAT (Soil and Water Assesment Tool), physically based distributed hydrological models were applied. Before evaluation, the model was calibrated and validated using 9 rainfall events. The Nash-Sutcliffe model efficiency (NSE) for streamflow using the HSPF was 0.62~0.76 and the determination coefficient ($R^2$) for water quality (sediment, total nitrogen T-N, and total phosphorus T-P) were 0.72, 0.62, and 0.63 respectively. The NSE for streamflow using the SWAT were 0.43~0.81 and the $R^2$ for water quality (sediment, T-N, and T-P) were 0.54, 0.87, and 0.64 respectively. From the field experiment of 16 rainfall events, the rice straw cover condition reduced surface runoff average 10.0 % compared to normal surface condition. By handling infiltration capacity (INFILT) in HSPF model, the value of 16.0 mm/hr was found to reduce about 10.0 % reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 87.2, 28.5, and 85.1 % respectively. By handling soil hydraulic conductivity (SOL_K) in SWAT model, the value of 111.2 mm/hr was found to reduce about 10.0 point reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 80.0, 83.2, and 78.7 % respectively. The rice straw surface covering was effective for removing surface runoff dependent loads such as sediment and T-P.

A Study on the Application of Agricultural Nonpoint Source Pollution(AGNPS) Model using GIS and RS (GIS와 RS를 이용한 비점원오염 모형의 적용에 관한 연구)

  • Kim, Seong-Joon;Lee, Yun-Ah;Lee, Nam-Ho;Yoon, Kwang-Sik;Hong, Seong-Gu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.63-72
    • /
    • 2000
  • The objective of this study was to identify the applicability of AGNPS(Agricultural Nonpoint Source Pollution) model using RS data; Landsat TM merged by KOMPSAT EOC and GIS data. AGNPS model which is well-known distributed nonpoint source pollution model was used as the assessment tool. This model has the capability to adjust the level of pollutant load from farmstead and the fertilization level of upland field. A small agricultural watershed($4.12km^2$) which has 20 livestock farmhouses located in Gosan-myun, Ansung-gun was selected. AGNPS data were prepared by using Arc/Info, GRASS, ER-Mapper and Idrisi. Four storm events in 1999 were used for runoff calibration, and 2 storm events which were measured in hourly-base at 4 locations along the stream were used for water quality(TN, TP) calibration.

  • PDF

Annual Runoff Loading of Nitrogen and Phosphorus from a Paddy Field

  • Han, Kang-Wan;Cho, Jae-Young;Choi, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.29-33
    • /
    • 1999
  • The present study examined annual runoff loading of nitrogen and phosphorus in the paddy field from 1 May, 1997 to 30 April, 1998. In the investigated area, the amount of rainfall was 1,095.6 mm and 414.6 mm during cropping season and non-cropping season. The annual rainfall was 1,510.2 mm. The total amount of runoff water was 1,043.2 mm and 281.0mm during cropping season and non-cropping season, and the added total amount of runoff water during two seasons was 1,324.2 mm. The runoff loading of nutrients caused by runoff water was measured as follows. The total-N was 149.23 and $8.67kg\;ha^{-1}$ (total amount=$157.90kg^{-1}ha^{-1}yr^{-1}$), the ammonia-N 102.98 and $4.44kg\;ha^{-1}$ ($107.42kg^{-1}ha^{-1}yr^{-1}$), the nitrate-N 28.45 and $1.23kg\;ha^{-1}$ ($29.68kg^{-1}ha^{-1}yr^{-1}$), the total-P 4.16 and $0.38kg\;ha^{-1}$ ($4.54kg^{-1}ha^{-1}yr^{-1}$) during cropping and non-cropping season respectively. When the loss ratio was calculated based on amounts of chemical fertilizer, about 68.6% of nitrogen and 16.7% of phosphorus was lost by runoff from applied fertilizer amount.

  • PDF

Implementation of Polyacrylamide in the Agricultural Environment and its Recent Review

  • Choi, Yonghun;Kim, Minyoung;Kim, Youngjin;Jeon, Jonggil;Seo, Myungchul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.440-448
    • /
    • 2016
  • Nonpoint sources of pollution (NPS) is defined as diffuse discharges of pollutants (e.g., nutrient, pesticide, sediment, and enteric microorganism) throughout the natural environment and they are associated with a variety of farming practices. Previous studies found that water soluble anionic polyacrylamide (PAM) is one of the highly effective measures for enhancing infiltration, reducing runoff, preventing erosion, controlling nonpoint source of pollutants, and eventually protecting soil and water environment. Potential benefits of PAM treatment in agricultural soil and water environments have been revealed by many research and they include low cost, easy and quick application, and suitability for use with other Best Management Practices (BMPs) for NPS control. This study reviews the various applications of PAM and discusses its further potentials in agricultural environment.

Analysis of Changes in Residents' Perception to Establish Resident-driven Management System for Rural Nonpoint Pollution Sources - Rural field forum process - (농촌 비점오염의 주민주도 관리체계 마련을 위한 주민 의식 변화 분석 - 농촌현장포럼 프로세스를 중심으로 -)

  • Na, Kyung Soo;Kim, Jong gun;Lim, Kyoung Jae;Kim, Ki Sung
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.4
    • /
    • pp.47-56
    • /
    • 2019
  • More than half of the nonpoint sources of polluting water occur in cultivating farmlands in rural areas. Agricultural nonpoint sources are discharged from large areas of farmlands, making it difficult to collect or treat pollutants. Farmland source management is known to be the most effective, and preventive management by improving farming methods is the key to reduce nonpoint pollution. At present, more than 30% of the pollutants flowing into the rivers and lakes are nonpoint pollutants caused by agricultural activities. As a countermeasure, it is more preferable to develop and apply optimal farming management techniques for agricultural nonpoint pollution management basically than to apply existing water quality management techniques. Because of the characteristics of nonpoint source pollution, it is necessary to manage farmlands in rural areas, so the willingness and competence of the residents is most important. The purpose of this study is to analyze and understand the process of changing the cognition of residents through capacity education and survey for nonpoint pollution management in rural areas. This study conducted intensive resident competency education and examined the process of changing resident awareness through three surveys. As a result of this study, it was found that continuous education and activities for rural non-point pollution management are necessary for raising awareness of residents and managing non-point pollution effectively, showing possibility of change residents' perception.

Analysis of Water Quality on Distributed Watershed using Topographic Data (공간정보를 이용한 분포형 유역 수질 모의)

  • Ryu, Byong-Ro;Jung, Seung-Kwon;Jun, Kye-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.897-913
    • /
    • 2004
  • There has been continuous efforts to manage the water resources for the required water quality criterion at river channel in Korea. However, we could not obtain the partial improvement only for the point source pollutant such as, wastewater from urban and industrial site through the water quality management. Therefore, it is strongly needed that the Best Management Practice(BMP) throughout the river basin for water quality management including non-point source pollutant loads. This problem should be resolved by recognizing the non-point source pollutant loads from upstream river basin to the outlet depends on the land use and soil type characteristic of the river basin using the computer simulation by distributed parameter model based on the detailed investigation and the application of Geographic Information System(GIS). Used in this study, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS) model is a tool suitable for long term evaluation of the effects of BMPs and can be used for un gauged watershed simulation of runoff and sediment yield. Now applications of model are in progress. So we just describe the limited result. However If well have done modeling and have investigated of propriety of model, well achieve our final goal of this study.

Analysis of Relationship Between Water Quality Parameters with Land Use in Yeongsan River Basin (영산강 수계의 토지이용과 수질항목 간의 상관관계 분석)

  • Park, Jinhwan;Moon, Myungjin;Kim, Kapsoon
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • The purpose of this study is to provide a base line data to improve the water quality in the Yeongsan River basin. As the major factor that affects the water quality of Yeongsan River is nonpoint pollution source, in order to find a resolve to improve the quality, a study was conducted to identify the correlation between the stream water quality and that of the land use. The study showed that the concentration of the contents in the water from the agricultural land environment was found to be higher as oppose to that found in the content of the water from the forest land. As a result, it can be deducted that agricultural land deteriorates water quality whereas that of the forest land is of much better quality. Therefore, it is highly recommended to take advanced improved care of agricultural land close to a water source to improve the quality of Yeongsan River basin.

A Study on The Non-Point Source Pollutant Load Routing Method (비점원 오염부하량 산정에 관한 연구)

  • Kim, Young-Seob;Lee, Gwan-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • After execute quantitative analysis that choose station and compose floodgate quality of water net and use floodgate data and quality of water data analysis target Sign of the cock as 1 dimension access for Non-point pollution source pollution and estimate of Gaeuncheon's at Kyongsangbukdo report to the Throne in this research, presented parameter conclusion notation model (AGNPS) in real condition of our agricultural area through comparison with spot value and result is as following in reply. With result observation and analysis result of the AGNPS model the comparison which it will pay from the hazard which it analyzes 2005, the rainfall thought which is used in the analysis to select 8 heavy rain thoughts 2005 July - is data until of September. Actual amount of rainfall 6.0~195.0 mm one time the antecedent precipitation showed API5 case 0.0~507.0mm and were observed peak flows (Qpeak) each from the P-1 $0.026m^3/sec{\sim}9.265m^3/sec$, from the P-2 $0.010m^3/sec-2.747m^3/sec$ and from the P-3c $0.064m^3/sec-13.482m^3/sec$ to show. Also amendment AMC condition it will be cool and it uses and the AGNPS model conference the result which it occurs, analysis and regression analysis of actual flow for as 0.992 very the possibility of getting the result which is good there was a decisive coefficient which is cool. But the gun is (T-P) with the total nitrogen (T-N) decisive coefficient each as 0.794 and 0.849 the presumption which is reliability generally will pay and with the fact that it will be the possibility of getting it is judged.

  • PDF

Conjunctive Use of SWAT and WASP Models for the Water Quality Prediction in a Rural Watershed (농촌유역 하천의 수질예측을 위한 SWAT모형과 WASP모형의 연계운영)

  • 권명준;권순국;홍성구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.116-125
    • /
    • 2003
  • Predictions of stream water quality require both estimation of pollutant loading from different sources and simulation of water quality processes in the stream. Nonpoint source pollution models are often employed for estimating pollutant loading in rural watersheds. In this study, a conjunctive application of SWAT model and WASP model was made and evaluated for its applicability based on the simulation results. Runoff and nutrient loading obtained from the SWAT model were used for generating input data for WASP model. The results showed that the simulated runoff was in good agreement with the observed data and indicated reasonable applicability. Loading for the water quality parameters predicted by WASP model also showed a reasonable agreement with the observed data. It is expected that stream water quality could be predicted by the coupled application of the two models, SWAT and WASP, in rural watersheds.