• Title/Summary/Keyword: agricultural ecosystem

Search Result 608, Processing Time 0.031 seconds

Forest Vegetation Structure around Marugeum (Ridge Line) Area in Deogyusan Region, Baekdudaegan (백두대간 덕유산권역 마루금 주변의 산림식생구조)

  • Kim, Hojin;Song, Juhyeon;Lee, Jeongeun;Cho, Hyunje;Park, Wangeun;Kim, Sujin;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.81-99
    • /
    • 2022
  • The Baekdudaegan, spanning around 701 km from Hyangrobong to Cheonwangbong of Mt. Jirisan in South Korea, is rich in biodiversity and known as the main ecological axis of the Korean Peninsula. The Neuljae-Yuksimnyeong section of Marugeum in the southern part of the Baekdudaegan, particularly Mt. Deogyusan, is an area in which various types of vegetation appear depending on the environmental characteristics. The aims of this study were to investigate the current vegetation status at the Neuljae-Yuksimnyeong section of the Baekdudaegan and to provide basic data to aid systematic conservation and management through future classification of forest vegetation types. A vegetation survey was conducted using 637 plots from May to October 2019. Vegetation-type analysis showed that the vegetation units could be classified as a Quercus mongolica community group divided into seven communities: the Abies koreana community, Sanguisorba hakusanensis community, Persicaria hydropiper community, Quercus variabilis community, Quercus dentata community, Cornus controversa community, and Quercus mongolica community. The A. koreana community was subdivided into the Dryopteris expansa group and Picea jezoensis group. The Q. variabilis community was also subdivided into the Q. dentata group and Q. variabilis typical group. We concluded that special management plans for distinctive forest vegetation, including subalpine vegetation, grass or herb vegetation, and agricultural vegetation, should be prepared urgently to aid ecosystem preservation and enhancement.

Study on Forestland Conversion Demand Prediction based on System Dynamics Model (System Dynamics 기반의 산지전용 수요 모델 개발에 관한 연구)

  • Doo-Ahn, KWAK
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.222-237
    • /
    • 2022
  • This study was performed to predict change of forestland area in future to 2050 based on System Dynamics Model which is based on feedback loop by causal relationship. As forestland area change in the future depends on potential forestland conversion demands, each demand type of forestland conversion such as agricultural, industrial, public and residential/commercial use was modeled using annual GDP, population, number of household, household construction permission area (1981~2019). In results, all of conversion demands would have continuously decreased to 2050 while residential and commercial land would be reduced from 2034. Due to such shortage, eventually, total of forestland in South Korea would have decreased to 6.18 million ha when compared to current 6.29 million ha. Moreover, the forestland conversion to other use types must be occurred continuously in future because most of forestland is owned privately in South Korea. Such steady decrement of forestland area in future can contribute to the shortage of carbon sink and encumber achievement of national carbon-neutral goal to 2050. If forestland conversion would be occurred inevitably in future according to such change trends of all types, improved laws and polices related to forestland should be prepared for planned use and rational conservation in terms of whole territory management. Therefore, it is needed to offer sufficient incentive, such as tax reduction and payment of ecosystem service on excellent forestland protection and maintenance, to private owners for minimizing forestland conversion. Moreover, active afforestation policy and practice have to be implemented on idle land for reaching national goal 'Carbon Neutral to 2050' in South Korea.

Occurrence characteristics and management plans of Paspalum distichum and P. distichum var. indutum (습지에서 발생하는 생태계교란야생식물인 물참새피와 털물참새피의 발생특성과 관리방안)

  • In Yong Lee;Seung Hwan Kim;Yong Ho Lee;Adhikari Pradeep;Dong Gun Kim;Sun Hee Hong
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.3
    • /
    • pp.325-334
    • /
    • 2022
  • Paspalum distichum and P. distichum var. indutum are perennial weeds of the family Poaceae that prefer moist environments such as waterfronts and waterways. The origin of both species is North America. P. distichum is distributed all over the world. However, P. distichum var. indutum occurs only in the United States, Japan, and Korea. For this reason, in many countries, P. distichum and P. distichum var. indutum are classified as the same species. In other words, P. distichum var. indutum is a different ecological type of P. distichum. Both species can reproduce and spread mainly by rhizome fragments rather than seeds. This rhizome has a characteristic that it does not germinate if it is buried in the ground with depth of more than 3 cm. As a management method for P. distichum and P. distichum var. indutum in agricultural lands (paddy fields), it is effective to combine cultural control and chemical control methods. In other words, combining deep plowing and harrowing can suppress the budding of water sparrow that has invaded paddy fields or fallow paddy fields. After that, these two species that germinate can be controlled by spraying soil treatment herbicides such as butachlor and thiobencarb or foliar treatment herbicides such as cyhalofop-butyl and fenoxaprop-p-ethyl.

Influence of Agricultural Water Return flow on Aquatic Ecosystem in Downstream (농업용수 회귀수량이 하천 수생태에 미치는 영향)

  • Lim, Eunjin;Kim, Jonggun;Shin, Yongchul;An, Hyunuk;Nam, Won Ho;Lim, Kyoung Jae;Lee, KwangYa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.246-246
    • /
    • 2020
  • 최근 우리나라에서 농업용수의 다원적 기능에 대한 공감대가 형성되고 작물생육에 필요한 관개용수로만 인식되던 농업용수의 개념이 농촌생활환경개선을 포함하는 다양한 지역용수로의 포괄적 개념으로 전환되고 있다. 농업용수는 식량생산 이외의 효용을 위한 다원적 기능을 가지며 농촌지역의 각종 생산활동과 생활조건의 유지개선을 위한 농업용수의 다원적 기능에 관한 관심이 증가하는 추세이다. 농업용수에서 발생하는 회귀수는 유역의 용수공급계획, 하천 유황의 예측, 관개용수 사용량 결정, 하천 건전화 방지, 수생생태계 보호 및 생물 다양성 확보 등 농업용수의 효율적 사용 및 환경생태유지를 위해 매우 중요한 역할을 하고 있다. 농업용수 회귀수량은 농업용수 중 하천으로 회귀하는 수량을 의미한다. 본류의 생태 유량 확보에 농업용수 회귀 수량이 기여하고 있으며 본류 하천의 환경 보전 기능을 하고 있다. 또한, 수생태계 보호 및 생물 다양성 확보 등 환경 생태 유지에 매우 중요한 역할을 하고 있다. 하지만 농업용수 회귀수량이 하천 수생태에 미치는 영향 분석 연구는 미흡한 실정이다. 따라서 본 연구의 목적은 대사 저수지 유역을 대상으로 농업용수 회귀 수량이 하류 하천 수생태에 미치는 영향을 정량적으로 평가하고자 한다. 본 연구에서는 회귀 수량은 관개용수량, 배수량, 침투량, 담수심 등 물수지 항목을 논물수지 모형에 적용하여 산정하였으며, 하류 하천의 생태유량 산정을 위해 대사저수지 하류에 위치한 생물측정망 자료를 통해 대표 어종을 선정하였다. PHABSIM 모형을 이용해 모의 대상 지역 특성 자료 및 인근 소하천 생물측정망 자료를 바탕으로 HSI 기반 대표 어종 서식처 환경에서 최적 생태유량을 산정하였다. 이를 통해 추정된 농업용수 회귀 수량에 따른 필요 유량이 어류 서식환경에 미치는 영향을 평가하였다. 본 연구 결과 대사저수지 하류 하천에서 농업용수 회귀수량이 차지하고 있는 기여도 큰 것으로 분석되었으며, 최적 생태유량과 비교한 결과 농업용수 회귀수량이 수생태(어류)에 미치는 영향이 큰 것으로 나타났다. 따라서 농업용수 회귀수량은 하류 하천의 하천유지수량뿐만 아니라 하천 환경생태유지에도 매우 중요한 역할을 하고 있음을 알 수 있다.

  • PDF

Effect of Solidago altissima L. Extract on Forage Crop Germination

  • Ho-Jun Gam;Yosep Kang;Eun-Jung Park;Ki-Yong Kim;Sang-Mo Kang;In-Jung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.114-114
    • /
    • 2022
  • There are 28 families and 166 species of exotic weeds on agricultural land and among these, 23 families and 80 species of exotic weeds occur on pastures. Among them, the Solidago altissima is a perennial weed belonging to the asteraceae family and it is an exotic weed that spreads to the surrounding area using methods such as high seed production, vegetative propagation using underground rhizomes and allelochemical. Accordingly, in 2009, the Ministry of Environment designated it as an ecosystem-disrupting species. This study was conducted to obtain basic data about the effects of S.altissima derived allelochemicals on forage crops. The root of S.altissima was separated, dried in the shade and then pulverized to prepare an root powder. Powder was repeatedly extracted with methanol for 3 days and concentrated under reduced pressure to obtain an root methanol extract. Dissolve the extract in distilled water, dispense it in a separate-funnel and proceed with liquid-liquid extraction by adding equal amounts of n-haxane (Hex), chloroform (CHCI3), ethyl acetate (EtoAC), and butanol (BuOH) in order of increasing polarity. A seed-bioassay was performed using fractions for each solvent, followed by separation and purification by silica gel column chromatography. As a result of the fraction germination test for each solvent, the IC50 values using the fresh weight of each fraction were 898.3 mg L-1, 676.3 mg L-1, 1160 mg L-1 and 1360 mg L-1. CA, CB, and CC fractions were obtained through primary silica gel column chromatography that used CHCI3 fraction. As a result of seed-bioassay using each fraction, the IC50 values for the fresh weight of each fraction was 537.3 mg L-1, 1280 mg L-1 and 1947 mg L-1. Based on this, 5 fractions were obtained as a result of secondary silica gel column chromatography using the CA fraction. A seed-bioassay was performed, as a result, the lowest IC50 value was calculated as 226.7 mg L-1 in the CAE fraction. Based on this, the fraction was analyzed by GC-MS. The results of this study can be used as basic research data on the effects of weeds on forage crops and allelochemicals secreted from S. altissima.

  • PDF

Introduction of a New Method for Total Organic Carbon and Total Nitrogen Stable Isotope Analysis of Dissolved Organic Matter in Aquatic Environments (수환경 내 용존성 유기물질의 총 유기탄소 및 총 질소 안정동위원소 신규 분석법 소개)

  • Si-yeong Park;Heeju Choi;Seoyeon Hong;Bo Ra Lim;Seoyeong Choi;Eun-Mi Kim;Yujeong Huh;Soohyung Lee;Min-Seob Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.339-347
    • /
    • 2023
  • Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.

Effects of Hot Water and Specific Gravity Treatment on Germination of Legumes and Green Manure Crops (열탕처리와 염수선 처리가 콩과 녹비작물 발아에 미치는 영향)

  • Seong Won Lee;Yeon Bok Kim
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.26 no.1
    • /
    • pp.16-21
    • /
    • 2024
  • Green manure crops have a variety of benefits, including improving soil fertility, removing soil salinity, enhancing soil aeration and moisture regulation, reducing the use of chemical fertilizers, reducing nitrous oxide emissions, reducing herbicide use through weed-suppressive effects, promoting agricultural ecosystem protection and carbon dioxide absorption capacity. To find ways to increase the germination rate of legumes and green manure crop seeds, which are imported in large quantities every year. It was carried out that two seed priming methods, osmotic priming and heat treatment, and compared their effects. Heat treatment was treated for 10 minutes at 40℃ or 60℃, followed by rinsing with water. Osmotic priming was applied for 30 seconds in a saline solution with a specific gravity of 1.13. Overall, there was no significant difference in the final germination rate, but it was found that osmotic priming and heat treatment affected the germination speed. However, applying heat treatment and osmotic priming simultaneously did not affect the germination characteristics. Therefore, it is suggested that heat treatment and osmotic priming can increase the germination speed of soybean and green manure crops.

Management Plan and Analysis of the Characteristics of Naturalized Plants by Ecological Restoration of Gaeumjeong Stream, Changwon-si (창원시 가음정천의 생태복원에 따른 귀화식물 특성 분석과 관리방안)

  • You, Ju-Han;Park, Kyung-Hun;Choi, Jin-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.4
    • /
    • pp.48-59
    • /
    • 2014
  • This study was carried out to present raw data on managing the restored urban stream by studying the naturalized plants distributed in Gaeumjeong Stream, Changwon-si, Gyeongsangnam-do, Korea. The results were as follows. The numbers of naturalized plants were summarized as 45 taxa including 17 families, 36 genera, 43 species and 2 varieties. The invasive alien plants were 2 taxa including Ambrosia artemisiifolia and Lactuca sativa. The following summarizes the attributes of the naturalized plants. Most of the plants commonly originated from Europe and North America. The 5 naturalized degree that was widely distributed and had many individual was the most common. Until 1921, after the opening of 1 period was the most common in the introduced period. Section 12 had the highest NI at 41.9%, and the lowest, at 20.5%, in sections 9 and 19 were analyzed. Section 1 had the highest UI at 6.2%, whereas, the lowest, at 2.5%, was calculated in sections 19 and 20. Section 2 showed the highest DI at 16.7%. The first results of the analysis of the causes for the invasion of naturalized plants on the riverside and waterways, and physical factors and maintenance are directly affected. Second, sewage, muddy water and sediment deposits this naturalized plant caused by a chemical factor. Third, it is thought that invasive alien plants are irregular as it happens in biological factor. The proposed management plan naturalized plants, the first, disturbance caused by species management is a young object is removed immediately before flowering scape to eliminate or suppress the propagation of physical methods will be needed. Second, the fact that the national spread of native plant species and planting management does not provide space for the growth is very important. Third, agricultural land is disturbed by agricultural practices by interfering with the action of naturalized plants because the source of the river should be prohibited in agriculture. In the future, if we studied the naturalized plants distributed in restored streams located in Changwon-si, the characteristics of change in the ecosystem impact is expected to be beneficial.

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain (지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.

Chemical Compositions of the Highway Side Fogwater in Shingal, Kyunggi-Province (경기도 신갈지역 고속도로변 안개의 화학적 조성)

  • 김홍률;주영특;정동준
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • pH value of sampled fogwater at source regions (above highway and road) in Yongin sites showed the lowest value and was increased after passing the forest stands. Changes of ion concentrations through the forest stands showed a lowering tendency at sampling sites. The fogwater passing the forest stands (Quercus mangolica and Pinus rigida) surrendered acid pollutants to crown and stem from the atmosphere. It was concluded that environmental moisture in the atmosphere is acidified in fogwater. The influence was extended to the pure zone, and the frequency of acid rain has increased. The forests are assumed to remove air pollutants because ion concentrations in fogwater decreased after passing the forests. The fogwater which functions as a local sink for pollutants (H$_2$SO$_4$, HNO$_3$, etc.) falling on plant surfaces is considered to effectively remove acid pollutants. But if the deposition of pollutants exceeds the capacity of purification, it would damage the forest ecosystem. Further investigation is necessary to identify tree species tolerant to acid pollutants.