• Title/Summary/Keyword: agricultural activity

Search Result 3,912, Processing Time 0.036 seconds

Rural Youth's Leisure Activity and Measures for Activation (농촌청소년의 여가활동 활성화방안)

  • Choi, Chang-Wook;Lee, Chae-Shik
    • Journal of Agricultural Extension & Community Development
    • /
    • v.11 no.1
    • /
    • pp.95-110
    • /
    • 2004
  • The purposes of this study were to analyze rural youth's leisure activity and to suggest measures for activation. This study was conducted by review of literature and questionnaire, The data was collected from 1,209 stratified cluster random sampled rural youth who are in middle school and high school. To analyze the data, SPSS/WIN program was employed. The major finding of the study were as follows: 1) About 30% of rural youths had less than 1-2 hours for leisure activity in daily life and more than 8 hours for leisure activity during the weekend, and over 40% of rural youths had no plan for leisure activity. 1) They recognized that leisure activity made them enjoy common life, decrease their stress, and get new experience far self-development, 3) participation in sports, organized-activity and self-directed activity of the middle schools youths were higher compare to youths in high schools, 4) to activate leisure life, rural youths expected to get a) direct support for participating leisure activity expenses(27%), b) develop and diffusion of diverse and interesting leisure programs(23%), and c) securing appropriate leisure facilities(22%).

  • PDF

The Arabidopsis AtLEC Gene Encoding a Lectin-like Protein Is Up-Regulated by Multiple Stimuli Including Developmental Signal, Wounding, Jasmonate, Ethylene, and Chitin Elicitor

  • Lyou, Seoung Hyun;Park, Hyon Jin;Jung, Choonkyun;Sohn, Hwang Bae;Lee, Garam;Kim, Chung Ho;Kim, Minkyun;Choi, Yang Do;Cheong, Jong-Joo
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.75-81
    • /
    • 2009
  • The Arabidopsis gene AtLEC (At3g15356) gene encodes a putative 30-kDa protein with a legume lectin-like domain. Likely to classic legume lectin family of genes, AtLEC is expressed in rosette leaves, primary inflorescences, and roots, as observed in Northern blot analysis. The accumulation of AtLEC transcript is induced very rapidly, within 30 min, by chitin, a fungal wall-derived oligosaccharide elictor of the plant defense response. Transgenic Arabidopsis carrying an AtLEC promoter-driven ${\beta}$-glucuronidase (GUS) construct exhibited GUS activity in the leaf veins, secondary inflorescences, carpel heads, and silique receptacles, in which no expression could be seen in Northern blot analysis. This observation suggests that AtLEC expression is induced transiently and locally during developmental processes in the absence of an external signal such as chitin. In addition, mechanically wounded sites showed strong GUS activity, indicating that the AtLEC promoter responds to jasmonate. Indeed, methyl jasmonate and ethylene exposure induced AtLEC expression within 3-6 h. Thus, the gene appears to play a role in the jasmonate-/ethylene-responsive, in addition to the chitin-elicited, defense responses. However, chitin-induced AtLEC expression was also observed in jasmonate-insensitive (coi1) and ethylene-insensitive (etr1-1) Arabidopsis mutants. Thus, it appears that chitin promotes AtLEC expression via a jasmonate- and/or ethylene-independent pathway.

Characterization of Endochitosanases-Producing Bacillus cereus P16

  • Jo, Yu-Young;Jo, Kyu-Jong;Jin, Yu-Lan;Jung, Woo-Jin;Kuk, Ju-Hee;Kim, Kil-Yong;Kim, Tae-Hwan;Park, Ro-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.960-968
    • /
    • 2003
  • A bacterial isolate showing a strong endochitosanase activity was isolated from soil and then characterized. The isolate was identified and designated as Bacillus cereus P16, based on morphological and biochemical properties, assimilation tests, cellular fatty acids pattern, along with 16S rRNA gene sequence. The optimized medium for producing extracellular chitosanase in a batch culture contained 1% tryptone, 0.5% chitosan, and 1% NaCl (pH 7.0). Powder chitosan and tryptone served the best as carbon and nitrogen sources, respectively, for the chitosanase production. Chitosanase activity was the highest when culture was completed at $37^{\circ}C$ among various temperatures ($20-42^{\circ}C$) tested in a shaking incubator (200 rpm). The levels of chitosanase activity in the culture fluid were 2.0 U/ml and 3.8 U/ml, respectively, when incubated in a flask for 60 h and in a jar fermenter for 24 h. The culture supernatant showed a strong liquefying activity on the soluble chitosan. The viscosity of 1% chitosan solution, that was incubated with the culture supernatant, was rapidly decreased, suggesting the secretion of endochitosanolytic enzymes by P16. The culture fluid revealed six endo-type chitosanase isozymes, two major (38 and 45 kD), and four minor (54, 65, 82, and 96 kD) forms by staining profile. The crude enzymes were very stable, and full activity was maintained for 4 weeks at $4^{\circ}C\;or\;-20^{\circ}C$ in the culture supernatant, suggesting a highly desirable stability rate for making an industrial application of the crude enzymes. The supernatant also cleaved the insoluble chitosan powder, but the hydrolysis rate was much lower. The enzymic degradation products of chitosan contained $(GlcN)_n$ (n=2-8). The concentration of chitosan in the reaction mixture of the crude enzyme affected the chitooligosaccharides composition of the hydrolysis products. When the higher concentration of chitosan was used, the higher degree of polymerized chitooligosaccharides were produced. By comparison with other commercial chitosanase preparations, P16 was indeed found to be a valuable enzyme source for industrial production of chitooligosaccharides from chitosan.

Study on functional improvement of peanut sprouts by LEDs

  • Shin, So-Hee;Choi, So-Ra;Song, Eun-Ju;Song, Young-Eun;Choi, Min-Kyung;Han, Hyun-Ah;Lee, Ki-Kwon;Lee, In-Sok;Chung, Nam-Jin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.277-277
    • /
    • 2017
  • The research was carried out to investigate a total polyphenol content, antioxidant activity, amino acid and resveratrol content of peanut sprouts (cotyledon, epicotyl, leaf, hypocotyl, root), in different light (white, blue, red, F-red, UV-A, UV-B, UV-C) conditions for 24 hours. Peanut seeds were sown on a $27.5{\times}15.9{\times}13cm$ tray and grown at the $25^{\circ}C$ under the dark condition for 14 days. Total polyphenolic contents of epicotyl and leaf were about 288mg GAE/100g in blue light. The DPPH radical scavenging of cotyledon and hypocotyl were 1.3~1.5 times (63%) and 2 times (40%) compared to control (43%, 19%), respectively. As to ABTS activity, its activity was increased by all LEDs treatment, Especially, the highest ABTS activity of the hypocotyl and leaf was shown as 99.1% in blue light. The essential amino acid content of hypocotyl and leaf was increased 1.9 times in the UV-B, 1.6 times in red, and 1.5 times in F-red, respectively. The non-essential amino acid content was increased by all LEDs treatment in hypocotyl and leaf. The content of resveratrol was increased by 1.3 times in UV-B compared to that of other tissues. Assessing inclusively, this study showed that there was a significantly positive effect between increase of physiological substance activity and LED light treatment, resulting in stably producing peanut sprouts. Therefore, a material treated with LEDs is thought to be useful as a functional food resources.

  • PDF

Dietary phosphorus deficiency impaired growth, intestinal digestion and absorption function of meat ducks

  • Xu, Huimin;Dai, Shujun;Zhang, Keying;Ding, Xuemei;Bai, Shiping;Wang, Jianping;Peng, Huanwei;Zeng, Qiufeng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1897-1906
    • /
    • 2019
  • Objective: An experiment was conducted to investigate the effects of dietary non-phytate phosphorus (nPP) deficiency on intestinal pH value, digestive enzyme activity, morphology, nutrient utilization, and gene expression of NaPi-IIb in meat ducks from 1 to 21 d of age. Methods: A total of 525 one-d-old Cherry Valley ducklings were fed diets (with 7 pens of 15 ducklings, or 105 total ducklings, on each diet) with five levels of nPP (0.22%, 0.34%, 0.40%, 0.46%, or 0.58%) for 21 d in a completely randomized design. Five experimental diets contained a constant calcium (Ca) content of approximately 0.9%. Body weight (BW), body weight gain (BWG), feed intake (FI), and feed to gain ratio (F:G) were measured at 14 and 21 d of age. Ducks were sampled for duodenum and jejunum digestion and absorption function on 14 and 21 d. Nutrient utilization was assessed using 25- to 27-d-old ducks. Results: The results showed ducks fed 0.22% nPP had lower (p<0.05) growth performance and nutrient utilization and higher (p<0.05) serum Ca content and alkaline phosphatase (ALP) activity. When dietary nPP levels were increased, BW (d 14 and 21), BWG and FI (all intervals), and the serum phosphorus (P) content linearly and quadratically increased (p<0.05); and the jejunal pH value (d 14), duodenal muscle layer thickness (d 14), excreta dry matter, crude protein, energy, Ca and total P utilization linearly increased (p<0.05); however, the serum ALP activity, jejunal $Na^+-K^+$-ATPase activity, and duodenal NaPi-IIb mRNA level (d 21) linearly decreased (p<0.05). Conclusion: The results indicated that ducks aged from 1 to 21 d fed diets with 0.22% nPP had poor growth performance related to poor intestinal digestion and absorption ability; but when fed diets with 0.40%, 0.46%, and 0.58% nPP, ducks presented a better growth performance, intestinal digestion and absorption function.