• Title/Summary/Keyword: agitation speed

Search Result 262, Processing Time 0.024 seconds

Xylitol의 생산성 향상을 위한 Two-stage Fed-batch 배양조건의 최적화

  • Jo, Yeong-Il;Seo, Jin-Ho;Yu, Yeon-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.356-359
    • /
    • 2000
  • A two-stage fed-batch fermentation was carried out to increase xylitol productivity by Candida tropicalis. The first stage for cell growth was performed in the pH-stat and continuous fed-batch modes. The higher cell growth and lower ethanol production obtained in the fed-batch mode where the growth medium was fed when pH of culture broth increased over 5.7. And also the effect of oxygen transfer on xylitol production was investigated by changing agitation speed under 0.5 vvm of aeration. The maximum xylitol productivity and yield were obtained at 500 rpm of agitation.

  • PDF

Effect of Aeration on Denitrification by Ochrobactrum authropi SY509

  • Song, Seung-Hoon;Yeom, Sung-Ho;Park, Suk-Soon;Yoo, Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.352-356
    • /
    • 2002
  • Aeration was found to affect the biological denitrification by Ochrobactrum authropi SY509. Although cell growth was vigorous under 1 vvm of aeration and an agitation speed of 400 rpm in a 3-L jar fermentor, almost no nitrate was removed. Yet under low agitation speeds (100, 200, and 300 rpm), denitrification occurred when the dissolved oxygen was exhausted shortly af-ter the inoculation of the microorganism. Ochrobactrum authropi SY509 was found to express highly active denitrifying enzymes under anaerobic conditions. The microorganism also synthesized denitrifying enzymes under aerobic conditions (1 vvm and 400 rpm), yet their activity was only 60% of the maximum level under anaerobic conditions and the nitrate removal efficiency was merely 15%. However, although the activities of the denitrifying enzymes were inhibited in the presence of oxygen, they were fully recovered when the conditions were switched to anaerobic conditions.

Alginate Nanohydrogels Prepared by Emulsification-Diffusion Method

  • Lee, So-Min;Yoo, Eun-Soo;Ghim, Han-Do;Lee, Su-Jeong
    • Macromolecular Research
    • /
    • v.17 no.3
    • /
    • pp.168-173
    • /
    • 2009
  • This study reports the preparation and characterization of nanohydrogels by using sodium alginate as a model material. Alginate nanohydrogels (ANH) were prepared by emulsification-diffusion method in a w/o system with 1,2-diacyl-sn-glycero- 3-phosphocholin as the lipophilic surfactant. The effects of the alginate to surfactant ratio and the remaining water contents on the mean particle size and swellability of ANHs were investigated in terms of the concentration, agitation speed, and agitation time. The feasibility of using nanohydrogels and their controllability were proved by the water the absorbency of ANHs during a 7-day evaluation by dynamic light scattering. In this work, the mean particle sizes of ANHs could be controlled from 49.2 nm (measured in ethanol phase) to $1.9{\mu}m$ (measured in water phase, after 7 days of water absorption).

The Effect of Environmental Factors on the Hydrolysis Characteristics of Lipase (환경인자가 리파제의 가수분해 특성에 미치는 영향)

  • Park, Geon-Gyu;Kim, Eun-Gi;Heo, Byeong-Gi
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.511-516
    • /
    • 1999
  • The effects of environmental and compositon factors, such as reaction time, metal ions, pH, agitation speed, the weight ratio of water to oil, and the weight of enzyme, on the hydrolysis of oils by Lipase-OF were investigated. In case of oils with low melting point, the optimum temperature of hydrolysis were the enzyme activity was maximum was 37$^{\circ}C$. However, when the melting temperature was higher than 4$0^{\circ}C$, the optimum temperature was around the fusion temperature. The activity of Lipase-OF decreased very rapidly with increase of temperature in the range of higher than 45$^{\circ}C$ and the activity perished above $65^{\circ}C$. The effect of agitation speed was investigated from 150 to 650 rpm. The hydrolysis of oils increased as the agitation speed increased up to 350 rpm, but it did not increase any more above 350 rpm. The weight ratio of water to oil was changed from 1 : 9 to 9 : 1 for the investigation of the effect on the hydrolusis. The weight ratio for maximum hydrolysis was 1 : 1. $Ca^{2+}\;and\;Mg^{2+}$ among various metal ions had some effect on the stimulation of hydrolysis. The optimum concentration of the ions was about 100ppm at which the hydrolysis increased, compared with that of distilled water, by 2 to 3%. The Optimum pH of Lipase-OF was 7. The hydrolysis decreased as the pH decreased as the pH decreased and also decreased as the pH increased. The content of enzyme affected the hydrolysis of oil. The hydrolysis increased with the content of Lipase-OF in the range of less than 0.013 wt% of substrate. However, the increase of hydrolysis with the content of Lipase-OF ceased above 0.013 wt%. The experiments investigating the effect of environmental and composition factors on the hydrolysis of oils showed that the optimum temperature was 37$^{\circ}C$, the pH 7, the concentration of $Ca^{2+}\;or\;Mg^{2+}$ 100 ppm, the agitation speed 350 rpm, the weight ratio of water to oil 1 : 1, and the content of Lipase-OF 0.013 wt% of substrate.

  • PDF

Determination of Oxygen Transfer Coefficient in Fed-Batch Culture of Streptomyces avermitilis with Concentrated Medium Control (농축 배지 조절 유가식 배양에 의한 Streptomyces avermitilis의 산소전달계수 측정)

  • 오종현;전계택;정요섭
    • KSBB Journal
    • /
    • v.16 no.5
    • /
    • pp.516-522
    • /
    • 2001
  • The large-scale production of antibiotics by filamentous mycelial organism requires and adequate supply of dissolved oxygen. In terms of productivity, it means that oxygen transfer is the rate-limiting step. Therefore, the oxygen transfer coefficients(K$\_$L/A) were determined in a broth involving a filamentous mycelial organism such as Streptomyces avermitilis for use in fermentations. To determine (K$\_$L/A) inn a stirred vessel, a great deal of effort is required to provide all the cells with a sufficient oxygen supply. To overcome the oxygen limitation in a batch culture, a fed-batch culture was applied to control the growth rate by an intermittent supply of nutrients. Thus, it was possible to maintain a suitable dissolved oxygen concentration at a low agitation rate. The optimal agitation speed was 350 rpm at low cell concentrations (below 7 g/L) by considering the efficiency of agitation and shear stress. The (K$\_$L/A) was found to decrease from 64.26 to 29.21h.$\^$-1/ when the biomass concentration was increased from 9.82 to 12.06 g/L. In addition, and increase in viscosity was also observed during the growth phase. By comparing the (K$\_$L/A) values for the various agitation and aeration rates, it was found that the effect of an increase in (K$\_$L/A) by aeration was reduced dramatically at high biomass concentrations. However, this effect was not observed when altering the agitation rate. This suggests that controlling the dissolved oxygen concentration by altering the agitation rate was more efficient than increase the aeration rate.

  • PDF

Control of Both Foam and Dissolved Oxygen in the Presence of a Surfactant for Production of $\beta$-Carotene in Blakeslea trispora

  • Kim, Seon-Won;Lee, In-Young;Jeong, Jae-Cheol;Lee, Jung-Heon;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.548-553
    • /
    • 1999
  • A production of $\beta-Carotene$was attempted in a fed-batch culture of Blakeslea trispora by controlling both foam and dissolved oxygen in the presence of surfactant, Span 20. Results obtained from the shake flask cultures indicated that a high concentration of dissolved oxygen was needed for both cell growth and $\beta-Carotene$ synthesis, and the optimal concentration of glucose was found to be in the range of 50-100 g/l. In order to maintain the dissolved oxygen concentration level at higher than 50% of air saturation, pure oxygen was automatically sparged into the medium with air. Foam was controlled by bypassing air from the submerged aeration to the headspace in response to the foam that was caused by Span 20. High agitation speed was found to be detrimental to the cell growth due to shear damage, even though it provided sufficient dissolved oxygen. On the other hand, a low aeration speed caused stagnant regions in the fermentor because of improper mixing. Thus, for the fed-batch operation, agitation speed was increased gradually from 300 to 700 rpm to prevent cell damage at the initial stage of fermentation and to give efficient mixing for a viscous culture broth as the culture proceeded. By controlling dissolved oxygen and foam, a high concentration of $\beta-Carotene$otene (1,190 mg/l) was obtained in 6 days of the fed-batch culture of B. trispora with 2.5% of the dry cell weight, which was approximately 5 times higher than that of the batch cultures.

  • PDF

Influence of Reaction Parameters on Preparation of Biodiesel from Rapeseed Oil using Supercritical Methanol (초임계 메탄올을 이용한 유채유 바이오디젤 제조에 대한 반응인자들의 영향)

  • Lim, Seon-Muk;Shin, Hee-Yong;Oh, Sea Cheon;Bae, Seong-Youl
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.174-177
    • /
    • 2010
  • In this study, non-catalytic transesterification from rapeseed oil using supercritical methanol was carried out by varying the operation parameters such as temperature ($320{\sim}365{^{\circ}C}$), time (0~20 min), pressure (10~35 MPa), molar ratio of oil to methanol (1 : 15~60) and agitation speed (0~500 rpm). In order to evaluate the effects of reaction parameters on the content of fatty acid methyl esters (FAMEs), we carried out the study using a batch reactor. The content of FAMEs increased when the temperature increased. However, the content of FAMEs decreased with temperature above $335^{\circ}C$ and time above 5 min. The content of FAMEs increased with increasing the molar ratio of methanol to oil but the content of FAMEs was slightly affected by molar ratio of oil to methanol above 1 : 45 and pressure above 20 MPa. It was found that the agitation speed above 100 rpm slightly affected the content of FAMEs. The highest content of FAMEs in biodiesel (95%) was obtained under the reaction conditions: temperature of 335 ${^{\circ}C}$, time of 10 min, pressure of 20 MPa, molar ratio of 1 : 45 (oil to methanol) and agitation speed of 250 rpm.

Influence of Reaction Parameters on Preparation of Biodiesel from Palm Oil using Supercritical Methanol (초임계 메탄올을 이용한 팜유 바이오디젤 제조에 관한 반응인자들의 영향)

  • Ryu, Jae-Hun;Lee, Si-Hong;Shin, Hee-Yong;Bae, Seong-Youl
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.651-654
    • /
    • 2009
  • In this study, non-catalytic transesterification using supercritical methanol was performed for preparation of biodiesel from palm oil. In order to investigate the effects of reaction parameters such as molar ratio of methanol to oil(30:1~60:1), pressure(8~25 MPa), temperature($320{\sim}350^{\circ}C$), agitation speed(0~1,000 rpm) and time(0~20 min) on the content of fatty acid methyl esters(FAMEs), we carried out the study using a batch reactor. With increasing molar ratio of methanol to oil, the content of FAMEs increased. However, the content of FAMEs was little affected by molar ratio above 45 and pressure above 20 MPa. The content of FAMEs increased when the temperature increased. However, the content of FAMEs decreased with temperature above at $350^{\circ}C$ and with time above 5 min. It was found that the agitation speed above 500 rpm scarcely affected the content of FAMEs. The highest content of FAMEs in biodiesel(95%) was obtained under the reaction conditions: temperature of $335^{\circ}C$, pressure of 20 MPa, molar ratio of 45:1(methanol to palm oil), agitation speed of 500 rpm and time of 10 min.

Effects of Dissolved Oxygen Level on Avermectin $B_{1a}$ Production by Streptomyces avermitilis in Computer-Controlled Bioreactor Cultures

  • Song, Sung-Ki;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1690-1698
    • /
    • 2006
  • In order to investigate the effect of dissolved oxygen (DO) level on AVM $B_{1a}$ production by a high yielding mutant of Streptomyces avermitilis, five sets of bioreactor cultures were performed under variously controlled DO levels. Using an online computer control system, the agitation speed and aeration rate were automatically controlled in an adaptive manner, responding timely to the oxygen requirement of the producer microorganism. In the two cultures of DO limitation, the onset of AVM $B_{1a}$ biosynthesis was observed to casually coincide with the fermentation time when oxygen-limited conditions were overcome by the producing microorganism. In contrast, this phenomenon did not occur in the parallel fermentations with DO levels controlled at around 30% and 40% throughout the entire fermentation period, showing an almost growth-associated mode of AVM $B_{1a}$ production: AVM $B_{1a}$ biosynthesis under the environments of high DO levels started much earlier than the corresponding oxygen-limited cultures, leading to a significant enhancement of AVM $B_{1a}$ production during the exponential stage. Consequently, approximately 6-fold and 9-fold increases in the final AVM $B_{1a}$ production were obtained in 30% and 40% DO-controlled fermentations, respectively, especially when compared with the culture of severe DO limitation (the culture with 0% DO level during the exponential phase). The production yield ($Y_{p/x}$), volumetric production rate (Qp), and specific production rate (${\bar{q}}_p$) of the 40% DO-controlled culture were observed to be 14%, 15%, and 15% higher, respectively, than those of the parallel cultures that were performed under an excessive agitation speed (350 rpm) and aeration rate (1 vvm) to maintain sufficiently high DO levels throughout the entire fermentation period. These results suggest that high shear damage of the high-yielding strain due to an excessive agitation speed is the primary reason for the reduction of the AVM $B_{1a}$ biosynthetic capability of the producer. As for the cell growth, exponential growth patterns during the initial 3 days were observed in the fermentations of sufficient DO levels, whereas almost linear patterns of cell growth were observed in the other two cultures of DO limitation during the identical period, resulting in apparently lower amounts of DCW. These results led us to conclude that maintenance of optimum DO levels, but not too high to cause potential shear damage on the producer, was crucial not only for the cell growth, but also for the enhanced production of AVM $B_{1a}$ by the filamentous mycelial cells of Streptomyces avermitilis.

Pilot-scale Optimization of Parameters Related to Dissolved Oxygen for Mass Production of Pullulan by Aureobasidium pullulans HP-2001 (Aureobasidium pullulans HP-2001 균주를 사용한 풀루란의 대량 생산을 위한 파이롯트 규모에서 용존산소와 관련된 조건의 최적화)

  • Gao, Wa;Kim, Yi-Joon;Chung, Chung-Han;Li, Jianhong;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1433-1442
    • /
    • 2010
  • Parameters related to dissolved oxygen for the production of pullulan by Aureobasidium pullulans HP-2001 were optimized in 7 l and 100 l bioreactors. The optimal concentrations of glucose and yeast extract for the production of pullulan were 50.0 and 2.5 g/l, respectively, and its conversion rate from glucose was 37% at a flask scale. The optimal initial pH of the medium and temperature for cell growth were 7.5 and $30^{\circ}C$, whereas those for the production of pullulan were 6.0 and $25^{\circ}C$. The optimal agitation speed and aeration rate for cell growth were 600 rpm and 2.0 vvm in a 7 l bioreactor, whereas those for the production of pullulan were 500 rpm and 1.0 vvm. The production of pullulan with an optimized agitation speed of 500 rpm and aeration rate of 1.0 vvm was 18.13 g/l in a 7 l bioreactor. Maximal cell growth occurred without inner pressure, whereas the optimal inner pressure for the production of pullulan was 0.4 kgf/$cm^2$ in a 100 l bioreactor. The production of pullulan under optimized conditions in this study was 22.89 g/l in a 100 l bioreactor, which was 1.38 times higher than that without inner pressure.