• Title/Summary/Keyword: agitation rate

Search Result 254, Processing Time 0.031 seconds

Optimization of Substract Concentration in Cell Production of Fungal Chitosan (균류키토산의 균체생산에서 기질농도 최적화에 관한 연구)

  • 김봉섭;서명교;노종수;이용희;이국의
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.72-78
    • /
    • 2003
  • In the process of producing chitosan from crustacean shell, the use of excessive acid and alkli is causing the problems of environmental pollution and of production cost. In this study, one way to solve these problems is to cultivate fungi, then, to extract chitosan from the cell wall. By means of flask incubation and batch cultivation, the optimum cultivation conditions for mass production of continuous cultivation was found. Four strains used for the production of fungal chitosan were Gongronella butleri IF08080, Absidia coerulea IF05301, Rhizopus delemar IF04775, Mucor tuberculisporus IF09256. In flask incubation to select strain of producing much chitosan by means of experiment of the effect of initial pH, Absidia coerulea IFO 5301 had highest yield in FCs, 258.1 $\pm$ 47.3 mg/200 $m\ell$l at pH 6.5. In flask incubation under the optimum cultivation condition, temperature 27$^{\circ}C$, culture time 6days, glucose 2%, peptone 1%, (NH$_4$)$_2$ SO$_4$ 0.5%, $K_2$HPO$_4$ 0.1 %, Nacl 0.1 %, MgSO$_4$ㆍ7$H_2O$ 0.05%, CaCl$_2$ㆍ2$H_2O$ 0.01 %, the yield of DCW brought the highest yields. In batch bioreactor, the optimum cultivation condition was that cell suspended solution was 70 $m\ell$, aeration rate 0.5 l/min, agitation rate 800 rpm, culture time 36 hr. In continuous bioreactor, the optimum substrate flow rate was 4 ι/day.

Production Conditions and Characterization of the Exo-biopolymer Produced by Submerged Cultivation of Ganoderma lucijum Mycelium (영지(Ganoderma lucidum) 균사체의 액체배양에 의한 세포외 생물고분자의 생산조건과 특성)

  • Lee, Shin-Young;Kang, Tae-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.111-118
    • /
    • 1996
  • For the screening and the development of the new bio-material, cultural conditions for the exo-biopolymer (EBP) production throught the submerged cultivation of Ganoderma lucidum mycelium were investigated. Also, the fractionations and the purifications of the exo-biopolymer were carried out and the chemical compositions of the exo-biopolymer were examined. The optimal culture conditions for the exo-biopolymer production were pH 5.0, 30$^{\circ}C$ and 100 rpm of agitation speed in the medium containing of 5% (w/v) glucose, 0.5%(w/v) yeast extract, 0.1% (w/v) ($(NH_4)_2HPO_4$, and 0.05% (w/v) $KH_2PO_4$. In the flask cultivation for 7 days under these conditions, the concentration of the maximum exo-biopolymer and the cell mass were 15.4g/l and 18.8g/l, respectively. The specific growth rate was 0.039 $hr^{-1}$. In addition, the substrate consumption rate, and the exo-biopolymer production rate were 0.043$gg^{-1}$$hr^{-1}$ and 0.025$gg^{-1}$$hr^{-1}$, respectively. The exo-biopolymer was fractionated into BWS (water soluble exo-biopolymer) and BWI (water insoluble exo-biopolymer) by the water extraction, and the sugar contents of two fractions were higher than 97% (based on dry basis). The components sugar of BWS and BWI fractions were glucose, galactose, mannose, xylose, and fucose. Their molar ratios were 3.6:1.5:2.1:0.5: trace and 2.9:3.1:2.0:1.6:0.3, respectively.

  • PDF

Optimization of Production Medium by Response Surface Method and Development of Fermentation Condition for Monascus pilosus Culture (Monascus pilosus 배양을 위한 반응표면분석법에 의한 생산배지 최적화 및 발효조건 확립)

  • Yoon, Sang-Jin;Shin, Woo-Shik;Chun, Gie-Taek;Jeong, Yong-Seob
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.288-296
    • /
    • 2007
  • Monascus pilosus (KCCM 60160) in submerged culture was optimized based on culture medium and fermentation conditions. Monacolin-K (Iovastatin), one of the cholesterol lowing-agent which was produced by Monascus pilosus may maintain a healthy lipid level by inhibiting the biosynthesis of cholesterol. Plackett-Burman design and response surface method were employed to study the culture medium for the desirable monacolin-K production. As a result of experimental designs, optimized production medium components and concentrations (g/L) were determined on soluble starch 96, malt extract 44.5, beef extract 30.23, yeast extract 15, $(NH_4)_2SO_4$ 4.03, $Na_2HPO_4{\cdot}12H_2O$ 0.5, L-Histidine 3.0, $KHSO_4$ 1.0, respectively. Monacolin-K production was improved about 3 times in comparison with shake flask fermentation of the basic production medium. The effect of agitation speed (300, 350, 400 and 450 rpm) on the monacolin-K production were also observed in a batch fermenter. Maximum monacolin-K production with the basic production medium was 68 mg/L when agitation speed was 500 rpm. And it was found that all spherical pellets (average diameter of $1.0{\sim}1.5mm$) were dominant during fermentation. Based on the results, the maximum production of 185 mg/L of monacolin-K with the optimized production medium was obtained at pH (controlled) 6.5, agitation rate 400 rpm, aeration rate 1 vvm, and inoculum size 3%.

Investigating the Au-Cu thick layers Electrodeposition Rate with Pulsed Current by Optimization of the Operation Condition

  • Babaei, Hamid;Khosravi, Morteza;Sovizi, Mohamad Reza;Khorramie, Saeid Abedini
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.172-179
    • /
    • 2020
  • The impact of effective parameters on the electrodeposition rate optimization of Au-Cu alloy at high thicknesses on the silver substrate was investigated in the present study. After ensuring the formation of gold alloy deposits with the desired and standard percentage of gold with the cartage of 18K and other standard karats that should be observed in the manufacturing of the gold and jewelry artifacts, comparing the rate of gold-copper deposition by direct and pulsed current was done. The rate of deposition with pulse current was significantly higher than direct current. In this process, the duty cycle parameter was effectively optimized by the "one factor at a time" method to achieve maximum deposition rate. Particular parameters in this work were direct and pulse current densities, bath temperature, concentration of gold and cyanide ions in electrolyte, pH, agitation and wetting agent additive. Scanning electron microscopy (SEM) and surface chemical analysis system (EDS) were used to study the effect of deposition on the cross-sections of the formed layers. The results revealed that the Au-Cu alloy layer formed with concentrations of 6gr·L-1 Au, 55gr·L-1 Cu, 24 gr·L-1 KCN and 1 ml·L-1 Lauryl dimethyl amine oxide (LDAO) in the 0.6 mA·cm-2 average current density and 30% duty cycle, had 0.841 ㎛·min-1 Which was the highest deposition rate. The use of electrodeposition of pure and alloy gold thick layers as a production method can reduce the use of gold metal in the production of hallow gold artifacts, create sophisticated and unique models, and diversify production by maintaining standard karats, hardness, thickness and mechanical strength. This will not only make the process economical, it will also provide significant added value to the gold artifacts. By pulsating of currents and increasing the duty cycle means reducing the pulse off-time, and if the pulse off-time becomes too short, the electric double layer would not have sufficient growth time, and its thickness decreases. These results show the effect of pulsed current on increasing the electrodeposition rate of Au-Cu alloy confirming the previous studies on the effect of pulsed current on increasing the deposition rate of Au-Cu alloy.

Effects od Segree of Cell-Cell Contact on Liver Specific Function of Rat Primary Hepatocytes

  • Tang, Sung-Mun;Lee, Doo-Hoon;Park, Jung-Keug
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • Cell-Cell interaction and the extracellular matrix (ECM) are belisved to play essential roles during in vitro culturing of primary hepatocytes in the control of differentiation and in the maintenance of tissue spcific functions. The objective of this study was to examine the effects of degree of cell-cell contact (DCC) on liver sperific function of rat promary hepatocytes. Hepatocyte aggregates with various with various degrees of cell-cell contantact, I. e., dispersed cell, longish aggregate, rugged aggregate, and smooth spheroid were obtained at 1, 5-6, 15-20, and 36-48 hrs, respectively in suspension cultures grown in spinner flasks embedded in Caalginate bead and collagen gel in order. The may result from mass transfer limitation and shear damage caused by agitation during aggregation. The rugged aggregate showed a higer viability and albumin secretion rate than the dispersed cells or the other aggregates. This result indicates the possible enhancement of a bioartificial liver's (BAL) performance using primary hepatocytes and the reduction in time to prepare a BAL through optimization of the immobilization time.

  • PDF

A Study on Emulsion Copolymerization of $\alpha,\omega$-Diacrylate Poly(dimethylsiloxane) Containing Vinyl Ester of Versatic Acid/Vinyl Acetate (Versatic Acid/vinyl Acetate의 비닐 에스테르를 가지는 $\alpha$,$\omega$-Diacrylate Poly(dimethylsiloxane)의 에멀션 공중합 연구)

  • Naghash, Hamid Javaherian;Mallakpour, Shadpour;Forushani, Parivash Yavari;Uyanik, Nurseli
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.95-102
    • /
    • 2008
  • The $\alpha$,$omega$-diacrylate poly(dimethylsiloxane) (DA-PDMS) containing vinyl ester of versatic acid/vinyl acetate (Veova-10/VAc) was prepared by emulsion copolymerization of (DA-PDMS), Veova-10 (with VAc), and auxiliary agents at $85^{\circ}C$ in the presence of ammonium peroxodisulfate (APS) as an initiator. Sodium dodecyl sulfate (SDS) and nonylphenol ethylene oxide-40 units (NP-40) were used as anionic and nonionic emulsifiers, respectively. The resulting copolymers were characterized by using Fourier transform infrared spectroscopy (FT-IR). Thermal properties of the copolymers were studied by using thermogravimetric analysis(TGA) and differential scanning calorimetry (DSC). The morphology of copolymers was also investigated by scanning electron microscopy (SEM) and then the effects of variables such as temperature, agitation speed, surfactant kinds, molecular weights, initiator, and DA-PDMS concentrations on the properties of the silicone-containing Veova-10/VAc emulsions were examined. The calculation of monomer conversion versus time histories indicates that by increasing the DA-PDMS concentration the polymerization rate and the number of polymer particles decrease, respectively.

Numerical Simulation on Longshore Current Produced by Random Sea Waves (불규칙파에 의한 연안류의 수치계산)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.1
    • /
    • pp.54-64
    • /
    • 1991
  • To accurately estimate the rate of sediment transport in shallow water bodies, it is necessary to investigate the irregular waves transformation characteristics and nearshore currents produced by random sea waves. Most of studies on numerical models for nearshore currents are based on the theory of monocromatic waves and thus, very few nearshore models take into account the effect of irregularities in the hight, period and directional spreading of incident waves. The numerical simulation model for nearshore currents used in this paper considers the effect of irregularities of incident waves, based on Individual Wave Analysis. The computational results are compared and shown in a reasionable agreement with the experimental data.

  • PDF

Pseudomonas aeruginosa BYK-2에 의한 생물유화제에 발효생산

  • Kim, Hak-Ju;Lee, Gyeong-Mi;Jeong, Hye-Seong;Kim, Bong-Jo;Gang, Yang-Sun;Gong, Jae-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.263-266
    • /
    • 2000
  • The purified biosurfactant $3.16g/{\ell}$ was obtained after cultivation for 104hr at $25^{\circ}C$ with an optimal agitation speed of 200rpm, an aeration rate of 2vvm in a $14{\ell}$ fermenter containing $5.5{\ell}$ of LB medium and 1%(w/v) olive oil as a carbon source. For the kinetic studies, the optimal substrate concentration was analyzed on different olive oil concentrations(0.1, 0.5, 1.0, 1.5, 2.0%(w/v)) and optimal culture conditions(MLBM, 200rpm, 2vvm at $25^{\circ}C$) in a $14{\ell}$ jar fermenter. The results obtained indicate that $K_s$=0.0086 $g/{\ell}$, $q_s$= 0.664 $g/g{\cdot}h$, $q_p$= $4.2{\times}10^{-3}$ $g/g{\cdot}h$, and ${\mu}_{max}$ was determined as $0.1449h^{-1}$.

  • PDF

Optimization of Cultural Conditions for Mycelial Growth and Exo-Polysaccharide Production in Jar Fermentation by Fomitopsis pinicola

  • Cha, Wol-Suk;Jilu, Ding;Lee, Choon-Beom;Nam, Hyung-Geun;Lee, Jun-Han;Maeng, Jeung-Moo;Lim, Hwan-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.187-191
    • /
    • 2005
  • The Study was carried out to investigate in the optimal mycelial growth and Exo-Polysaccharides of Fomitopsis pinicola. Jar fermentations were carried out to optimize the culture conditions for mycelial growth and exo- polysaccharide production. The optimal agitation speed and aeration rate were 200 rpm and 1.5 v.v.m., respectively. Under optimal culture conditions, the maximum mycelial growth and exo-polysaccharide production after 11 days with a 5 L jar fermenter containing the optimized medium were 10.21 g/L and 3.56 g/L, respectively. However, the fundamental information obtained this study is insufficient in the development of a efficient process for mycelial growth and exe-polysaccharide production from Fomitopsis pinicola.

  • PDF

Determination of Optimum Conditions for Xylose Fermentation by Pichia stipitis (Pichia stipitis에 의한 Xylose 발효의 최적조건 결정)

  • 권순효;유연우서진호
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.452-456
    • /
    • 1993
  • This study was carried out to optimize the fermentation conditions for direct alcohol fermentation of xylose by Pichia stipitis CBS 5776. The best cell growth and the ethanol production were obtained under 0.05 VVM aeration and 300rpm agitation at $30^{\circ}C$ using 100 g/l xylose medium of the initial pH 5.0. In the above condition, the maximum specific growth rate and maximum cell concentration were 0.14hr-1 and $1.3 \times109$ cells/ml, respectively. Pichia stipitis CBS 5776 also produced 40.2g/l ethanol utilizing about 96% of 100g/l xylose after 72hr fermentation. At this point, the overall volumetric ethanol productivity was 0.56g/1-hr and the ethanol yield was 0.42 g-ethanol/g-xylose consumed, which corresponds to 82% of the theoretical yield.

  • PDF