A Study on Emulsion Copolymerization of $\alpha,\omega$-Diacrylate Poly(dimethylsiloxane) Containing Vinyl Ester of Versatic Acid/Vinyl Acetate

Versatic Acid/vinyl Acetate의 비닐 에스테르를 가지는 $\alpha$,$\omega$-Diacrylate Poly(dimethylsiloxane)의 에멀션 공중합 연구

  • Published : 2008.03.31

Abstract

The $\alpha$,$omega$-diacrylate poly(dimethylsiloxane) (DA-PDMS) containing vinyl ester of versatic acid/vinyl acetate (Veova-10/VAc) was prepared by emulsion copolymerization of (DA-PDMS), Veova-10 (with VAc), and auxiliary agents at $85^{\circ}C$ in the presence of ammonium peroxodisulfate (APS) as an initiator. Sodium dodecyl sulfate (SDS) and nonylphenol ethylene oxide-40 units (NP-40) were used as anionic and nonionic emulsifiers, respectively. The resulting copolymers were characterized by using Fourier transform infrared spectroscopy (FT-IR). Thermal properties of the copolymers were studied by using thermogravimetric analysis(TGA) and differential scanning calorimetry (DSC). The morphology of copolymers was also investigated by scanning electron microscopy (SEM) and then the effects of variables such as temperature, agitation speed, surfactant kinds, molecular weights, initiator, and DA-PDMS concentrations on the properties of the silicone-containing Veova-10/VAc emulsions were examined. The calculation of monomer conversion versus time histories indicates that by increasing the DA-PDMS concentration the polymerization rate and the number of polymer particles decrease, respectively.

Keywords

References

  1. A. Veniaminov, E. H. Sillescu, and E. Bartsch, Macromolecules, 36, 4953 (2003)
  2. A. D. Chesne, A. Bojkova, E. Stockelmann, S. Krieger, and C. Heldmann, Acta Polym., 49, 355 (1998)
  3. J. Rottstegge, P. Kindervater, M. Wilhelm, K. Landfester, C. Heldman, J. P. Fischer, and H. W. Spiess, Colloid. Polym. Sci., 281, 1120 (2003)
  4. H. D. Bruyn, R. G. Gilbert, and M. J. Ballard, Macromolecules, 29, 8669 (1996)
  5. D. Chen, Q. Y. Zhao, and L. Wang, J. Appl. Polym. Sci., 78, 1062 (2000)
  6. R. Rutkaite, G. Buika, J. V. Grazulevicius, and R. Kavaliunas, Chem. Tech., 1, 75 (1997)
  7. P. H. H. Araujo, R. Giudici, and C. Sayer, Macromol. Symp., 206, Issue 1, 190 (2004)
  8. N. Lazaridis, A. H. Alexopoulos, and C. Kiparissides, Macromol. Chem. Phys., 202, 2622 (2001)
  9. S. Daquesne, J. Lefebvre, R. Delobel, G. Camino, M. LeBras, and G. Seeley, Polym. Degrad. Stabil., 83, 28 (2004)
  10. D. Ragauskiene and A. Railaite, Polym. Symp., Vilnius, VU, p 78 (2002)
  11. J. K. Oh, J. P. Tomba, X. Ye, R. Eley, J. Rademacher, R. Farwaha, and M. A. Winnik, Macromolecules, 36, 5814 (2003)
  12. J. K. Oh, J. Yang, J. P. Tomba, R. Eley, J. Rademacher, R. Farwaha, and M. A. Winnik, Macromolecules, 36, 8845 (2003)
  13. D. T. Liles and D. L. Murray, U.S. Patent 5,480,919 (1996)
  14. P. E. Share and W. H. Pippin, U.S. Patent 5,563,214 (1996)
  15. T. Yamauchi and Y. Kamiyama, U.S. Patent 5,852,095 (1998)
  16. O. Maeda, H. kobayashi, and K. Kageishi, Japan Patent 26, 691 (2000)
  17. M. Zou, S. Wang, Z. Zhang, and X. Ge, Eur. Polym. J., 41, 2613 (2005)
  18. M. Yamaya, M. Furuya, H. kizaki, and A. Yamamoto, U.S. Patent 6, 147, 156 (2000).
  19. A. Shaffie, A. B. Moustafa, E. S. Mohamed, and A. S. Badran, J. Polym. Sci.; Part A: Polym. Chem., 35, 3149 (1997)
  20. P. N. Kumar, G. S. P. Sanghvi, D. O. Shah, and D. Surekha, Langmuir, 16, 5870 (2000)
  21. A. S. Badran, A. B. Moustafa, A. A. Yehia, and S. M. M. Shendy, J. Polym. Sci.; Part A: Polym. Chem., 28, 424 (1990)
  22. M. Konno, K. Shimizu, K. Arai, and S. Saito, J. Polym. Sci.; Part A: Polym. Chem., 25, 230 (1987)
  23. Z. Q. Yu, P. Hong, J. N. A. Li, and X. Z. Lin, Colloid Surf. A, 242, 15 (2004)
  24. Z. G. Song and W. Poehlein, J. Polym. Sci.; Part A: Polym. Chem., 28, 2392 (1990)
  25. W. D. Harkins, J. Am. Chem. Soc., 69, 1444 (1947)
  26. W. V. Smith and R. H. Ewart, J. Chem. Phys., 16, 599 (1948)
  27. K. Kumar and K. S. Rana, Iran. Polym. J., 5, 293 (2002)
  28. C. Y. Kan, X. L. Zhu, Q. Yuan, and X. Z. Kong, Polym. Adv. Technol., 8, 633 (1997)