• 제목/요약/키워드: agile missile

검색결과 13건 처리시간 0.028초

Guidance Law for Agile Turn of Air-to-Air Missile During Boost Phase

  • Han, Seungyeop;Bai, Ji Hoon;Hong, Seong-Min;Roh, Heekun;Tahk, Min-Jea;Yun, Joongsup;Park, Sanghyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.709-718
    • /
    • 2017
  • This paper proposes the guidance laws for an agile turn of air-to-air missiles during the initial boost phase. Optimal solution for the agile turn is obtained based on the optimal control theory with a simplified missile dynamic model. Angle-of-attack command generating methods for completion of agile turn are then proposed from the optimal solution. Collision triangle condition for non-maneuvering target is reviewed and implemented for update of terminal condition for the agile turn. The performance of the proposed method is compared with an existing homing guidance law and the minimum-time optimal solution through simulations under various initial engagement scenarios. Simulation results verify that transition to homing phase after boost phase with the proposed method is more effective than direct usage of the homing guidance law.

Missile Autopilot Design for Agile Turn Using Time Delay Control with Nonlinear Observer

  • Lee, Chang-Hun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권3호
    • /
    • pp.266-273
    • /
    • 2011
  • This paper deals with missile autopilot design for agile turn phase in air-to-air engagement scenarios. To attain a fast response, angle-of-attack (AOA) is adopted for an autopilot command structure. Since a high operational AOA is generally required during the agile turn phase, dealing with the aerodynamic uncertainties can be a challenge for autopilot design. As a remedy, a new controller design method based on robust nonlinear control methodology such as time delay control is proposed in this paper. Nonlinear observer is also proposed to estimate the AOA in the presence of the model uncertainties. The performance of the proposed controller with variation of the aerodynamic coefficients is investigated through numerical simulations.

유도탄의 유도명령 추종을 위한 혼합제어기 설계 : 공력 및 추력벡터제어 (Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control)

  • 이호철;최용석;송택렬;송찬호;최재원
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.658-668
    • /
    • 2004
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories. In addition, an autopilot design method is proposed by using time-varying control technique which is time-varying version of the pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. The control allocation proposed in this paper is capable of extracting the maximum performance by combining each control effector, aerodynamic fin and thrust vectoring control. The adopted time-varying control technique for the autopilot design enhances the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulations with aerodynamic data.

Autopilot Design for Agile Missile with Aerodynamic Fin and Thrust Vecotring Control

  • Lee, Ho-Chul;Choi, Yong-Seok;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.525-530
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion which generates the nominal control input trajectories, and autopilot design using the time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Dynamic inversion can decide the amount of the deflection of each control effector, aerodynamic fin and thrust vectoring control, to extract the maximum performance by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. Nonlinear simulations demonstrates the dynamic inversion provides the effective nominal control input trajectories to achieve the angle of attack command, and time-varying control technique exhibits good robustness for a wide range of angle of attack.

  • PDF

공력 및 추력을 이용한 유도탄의 혼합제어기 설계(I) (Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control)

  • 이호철;최용석;최재원;송택렬;송찬호
    • 한국군사과학기술학회지
    • /
    • 제6권3호
    • /
    • pp.122-130
    • /
    • 2003
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories, and autopilot design using time-varying control technique which is time-varying version of pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. Control allocation of this paper is capable of extracting the maximum performance from each control effector, aerodynamic fin and thrust vectoring control, by combining the action of them. Time-varying control technique for autopilot design enhance the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulation.

Missile Autopilot Design for Agile Turn Control During Boost-Phase

  • Ryu, Sun-Mee;Won, Dae-Yeon;Lee, Chang-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권4호
    • /
    • pp.365-370
    • /
    • 2011
  • This paper presents the air-to-air missile autopilot design for a $180^{\circ}$ heading reversal maneuver during boost-phase. The missile's dynamics are linearized at a set of operating points for which angle of attack controllers are designed to cover an extended flight envelope. Then, angle of attack controllers are designed for this set of points, utilizing a pole-placement approach. The controllers' gains in the proposed configuration are computed from aerodynamic coefficients and design parameters in order to satisfy designer-chosen criteria. These design parameters are the closed-loop frequency, damping ratio, and time constant; these represent the characteristics of the control system. To cope with highly nonlinear and rapidly time varying dynamics during boost-phase, the global gain-scheduled controller is obtained by interpolating the controllers' gains over variations of the angle of attack, Mach number, and center of gravity. Simulation results show that the proposed autopilot design provides satisfactory performance and possesses good [ed: or "sufficient" or "excellent"] capabilities.

Autopilot Design for Agile Missile with Aerodynamic Fin and Side Thruster

  • Choi, Yong-Seok;Lee, Ho-Chul;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.508-513
    • /
    • 2003
  • This paper is concerned with a mixed control with aerodynamic fin and side thrusters applied to an agile missile using two-time scale dynamic inversion and linear time-varying control technique. The nonlinear dynamic inversion method with the weighting function allocates the desired control inputs (aerodynamic fin and side thrusters) to track a reference trajectory, and the time-varying control technique guarantees the robustness for the uncertainties. Closed-loop stability is achieved by the assignment of the extended-mean of these linear time-varying eigenvalues to the left half complex plane. The proposed schemes are validated by nonlinear simulations.

  • PDF

유도탄의 유도명령 추종을 위한 혼합제어기 설계: 공력 및 측추력제어 (Mixed Control of Agile Missile with Aerodynamic fin and Side Thrust Control)

  • 최용석;이호철;송택렬;송찬호
    • 제어로봇시스템학회논문지
    • /
    • 제10권10호
    • /
    • pp.947-955
    • /
    • 2004
  • This paper is concerned with a mixed control with aerodynamic fin and side thrust control applied to an agile missile using a dynamic inversion and a time-varying control technique. The nonlinear dynamic inversion method with the weighting function allocates the desired control inputs(aerodynamic fin and side thrust control) to achieve a reference command, and the time-varying control technique plays the role to guarantee the robustness for the uncertainties. The proposed schemes are validated by nonlinear simulations with aerodynamic data.

미사일 및 표적 운동을 고려한 시선지령유도에서의 코리올리 가속도 보상 (The effects of target and missile dynamics on the optimal coriolis acceleration compensation)

  • 류동영;탁민제;엄태윤;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.596-600
    • /
    • 1992
  • In CLOS guidance, feedback compensation of the Coriolis acceleration is used to reduce miss distance. This paper presents the effects of the bandwidth of target and missile on the optimal Coriolis acceleration compensation. A state space formulation of CLOS guidance is used to implement CLOS guidance in feedback form. And the LQR control method is applied to find the optimal feedback gain. From the analysis of the Riccati equations of the optimal control, the following facts are observed: When the target is agile, the optimal gain is reduced, since the compensation becomes ineffective. The missile bandwidth also affects the Coriolis accleration compensation. Narrower missile requires more compensation for the Coriolis acceleration.

  • PDF

Minimum-Time Guidance and Control Law for High Maneuvering Missile

  • Yamaoka, Seiji
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권1호
    • /
    • pp.46-58
    • /
    • 2009
  • This paper deals with design procedure of online guidance and control law for future missiles that requires agile maneuverability. For the purpose, the missile with high powered side thruster is proposed. The guidance and control law for such missiles is discussed from a point of view of optimal control theory in this paper. Minimum time problem is solved for the approximated system. It is derived that bang- bang control is optimal input from the necessary conditions of optimal solution. Feedback guidance without iterative calculation is useful for actual systems. In this paper. multiple design point method is applied to design feedback gains and feed forward inputs of the guidance and control law. The numerical results show that the proposed guidance and control law has a high -performance for wide-ranging boundary conditions.