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Abstract

This paper proposes the guidance laws for an agile turn of air-to-air missiles during the initial boost phase. Optimal solution 

for the agile turn is obtained based on the optimal control theory with a simplified missile dynamic model. Angle-of-attack 

command generating methods for completion of agile turn are then proposed from the optimal solution. Collision triangle 

condition for non-maneuvering target is reviewed and implemented for update of terminal condition for the agile turn. The 

performance of the proposed method is compared with an existing homing guidance law and the minimum-time optimal 

solution through simulations under various initial engagement scenarios. Simulation results verify that transition to homing 

phase after boost phase with the proposed method is more effective than direct usage of the homing guidance law.
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1. Introduction

An air power is the most important element in recent 

warfare, and thus having an air supremacy is essential. To 

achieve such positions, capacities of fighters, which are 

mainly maneuverability and evasion ability, have progressed 

enormously over the years. Such improvements have increased 

the needs for more advanced air-to-air missile capability. 

Among the various capabilities of air-to-air missiles, an all-

aspect capability is required more than anything else to win 

an air combat. To achieve the all-aspect capability, the air-to-

air missile requires an agile turn maneuver.

Due to the importance of the problem, many researchers 

have dedicated themselves to this area, but most of them 

have focused on controller design, which enables agile turn 

maneuvers, rather than agile turn maneuver itself. During the 

agile turn phase, a body acceleration or angle-of-attack are 

possible candidates for control parameter, but commanding 

the body acceleration may not be desirable, compared to 

angle-of-attack according to [1]. Based on the observation 

made in [1], researchers [1-8] have investigated it using angle-

of-attack. Feedback linearization method with uncertainty 

adaptation based on neural networks was used for agile 

missile autopilot design at [2]. Dynamic inversion and the 

Extended-Mean Assignment control technique were applied 

to the control of the agile missile using both fin and side 

thruster in [3]. In addition to these, an adaptive backstepping 

control based on neural network in [4], the backstepping 

control methodology in [5], gain scheduled pole placement 

approach in [6], and a time-delay-control was in [7] were 

considered as the agile missile control method. Separately, 

researchers in [8-10] studied the guidance law for varying-

velocity missile, but they did not consider the high angle-of-

attack dynamics occurred during the agile turn.

A proper controller design is the most critical issue for 

an agile maneuver capability, and for this reason, almost 

researches focused on the controller design, and achieved 

great results. Previous researches study how to generate output 

actuator commands for a given input guidance command 

during the boost phase. The given input guidance command 
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was simply a constant command (maximum angle-of-attack 

command) or off-line optimized command. To overcome 

the limitation, this paper focuses on how to generate input 

guidance command for a given proper controller in an 

optimal sense during the boost phase. 

This paper covers a velocity maximizing optimal agile turn 

using only thrust without aerodynamic force, and application with 

the aerodynamic force. The overall structure of the paper consists 

of four sections, including this introduction. In addition, the rest 

of the paper is organized as follows: Detailed description about 

an agile turn of missile problems, an optimal solution for agile 

turn without considering aerodynamic forces, and proposing 

agile turn control law are explained at Section 2. Numerical 

simulations are conducted under various combat scenarios, and 

the performance of the proposed law is investigated in Section 3. 

Finally, Section 4 covers concluding remarks.

2. Agile Turn Control Law

2.1 Problem Definition

Short Range Air-to-Air Missile(SRAAM) must be able 

to complete an agile turn during the initial boost phase to 

locate the target within seeker’s field of view, so that it can 

obtain the state of the target required for homing guidance. 

In addition, maximizing velocity during the agile turn is also 

important to improve the intercept performance as well as to 

minimize time to intercept. In that sense, the problem can be 

formulated as an optimal control problem, which is finding 

an optimal control history that maximizes terminal velocity 

at the end of the boost phase while satisfying terminal 

desired heading angle constraint.

Before constructing the optimal control problem, the 

equation of pitch planar motion of the missile during the 

boost phase can be expressed as follows.
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In here, V , γ , a and u denote for speed, flight-path angle, angle-of-attack and angle-of-attack 

command of missile, respectively, and T , L , D , m and W stand for thrust, lift, drag, mass 

and weight of missile, respectively. Additionally, neglecting gravity term in Eq. (1) represents yaw 

planar motion of the missile

.

(1)

In here, V, r, α and u denote for speed, flight-path angle, angle-

of-attack and angle-of-attack command of missile, respectively, 

and T, L, D, m and W stand for thrust, lift, drag, mass and  weight 

of missile, respectively. Additionally, neglecting gravity term in 

Eq. (1) represents yaw planar motion of the missile 

Under the assumption that an appropriate attitude 

controller is given, the time derivative of angle-of-attack 

is expressed as a function of angle-of-attack command 

and angle-of-attack. Since the angle-of-attack follows the 

command by proper controller, the function for angle-of-

attack dynamics monotonically increases with respect to the 

command for the given angle-of-attack.
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For example, the most frequently used function is a first-order lag system with time constant τ ,

which is expressed as Eq. (3) and it satisfies Eq. (2).
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τ
−
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2.2 Optimal Thrust Steering Law

From the problem defined at 2.1, the optimal control problem consisting the cost function and the 

constraint in Eq. (4) can be defined. Note that, ( )fV t and ( )ftγ represent velocity and flight-path-

angle at the engine burn off time ft , and fγ denotes for desired flight-path-angle.
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J V t
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Unfortunately, the above optimal control problem does not provide a closed form solution due to 

high nonlinearity in aerodynamics. Therefore, the optimal solution without considering aerodynamic 

force is obtained first, and then the solution is applied to the situation where aerodynamic force exists.

Note that for this reason, the agile turn method described in this paper shows better performance in 

situations where the effect of the aerodynamic force is relatively low, such as a low initial velocity 

launch and fast attitude control using TVC or side thruster. 

Removing aerodynamic forces from Eq. (2) results following simplified dynamic Eq. (5).
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m t
= (5)

Referring Eq. (1), Hamiltonian and corresponding co-state equations can be derived.
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Referring Eq. (1), Hamiltonian and corresponding co-

state equations can be derived.
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To completely construct the optimal control problem, boundary conditions must be clearly defined. 

From explanation of previous problem, boundary conditions for states and corresponding co-state are 

defined as Eq. (8).
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Since the control input is bounded, Pontryagin’s minimum principles(PMP) Eq (9) is used to 

derive the optimal condition.

* * * * *( , , , t) ( , , , t)H H≤x u λ x u λ (9)

Due to the assumption made at Eq. (2), applying PMP to Eq. (6) results following the optimal control 

strategy.
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As noted in Eq. (10), singular condition occurs when 0aλ = , and terminal conditions Eq. (8) imply 

existence of the singular interval for reachable problem, at least at the last moment. However, the 

PMP itself does not give any information about the control command during singular interval, thus 

following procedures Eqs. (11) to (14) are investigated.

At singular interval [ , ]s ft t t∈ , Eq. (11) must be held,

0 0d
dt

a
a

λ
λ = ⇒ = (11)

Substituting Eq. (11) to Eq. (7) results

tan 0VV γλ a λ− = for [ , ]s ft t t∈ (12)

,
(6)
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Time derivative of Eq. (12) is 
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Equating Eq. (14) concludes the following nonlinear equation that holds along the singular interval.
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From dynamic equation, Eq. (15) implies relation between angle-of-attack and flight-path-angle.
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Integration of Eq. (16) results the main relation (constant attitude) during the singular interval.
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With relation Eq. (17), velocity and flight-path-angle of missile along the singular interval can be 
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By terminal flight-path-angle constraint Eq. (4), following must satisfy on singular interval.
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Before constructing the switching condition of singular control, overall structure of optimal policy 

can be estimated by principles of optimality. Since following singular control is optimal from 

backward from above results, there must be existed moment that enters towards to the singular 

interval, and the criterion is aλ . For short, if the singular criterion is satisfied, it follows the singular 

control, and if not, it follows the maximum control by PMP. However, implementing the criterion

directly is impossible, because aλ is unknown variable. Therefore, we define singular surface ( )s X

which is only function of states and not of co-states as follow and by condition Eq. (19) 0aλ = if 

To completely construct the optimal control problem, 

boundary conditions must be clearly defined. From 

explanation of previous problem, boundary conditions for 

states and corresponding co-state are defined as Eq. (8).
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Rearranging Eq. (13) reveals
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From dynamic equation, Eq. (15) implies relation between angle-of-attack and flight-path-angle.
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= = − = − (16)

Integration of Eq. (16) results the main relation (constant attitude) during the singular interval.

consta γ θ+ = = (17)

With relation Eq. (17), velocity and flight-path-angle of missile along the singular interval can be 

expressed explicitly for [ , ]s ft t t∈ . (Subscript s in Eqs. (18) to (19) means states at st t= )
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( ) ( ) ( )
( ) ( )

1
, sin

( ) tan 0
, cos

Y s f s f s
f f f

X s f s

V t A t t g t t
t

V t A t t

θ
γ γ γ

θ
−
 + − −
 − = − =
 + 

(19)

Before constructing the switching condition of singular control, overall structure of optimal policy 

can be estimated by principles of optimality. Since following singular control is optimal from 

backward from above results, there must be existed moment that enters towards to the singular 

interval, and the criterion is aλ . For short, if the singular criterion is satisfied, it follows the singular 

control, and if not, it follows the maximum control by PMP. However, implementing the criterion

directly is impossible, because aλ is unknown variable. Therefore, we define singular surface ( )s X

which is only function of states and not of co-states as follow and by condition Eq. (19) 0aλ = if 

.
(14)
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Before constructing the switching condition of singular control, overall structure of optimal policy 

can be estimated by principles of optimality. Since following singular control is optimal from 

backward from above results, there must be existed moment that enters towards to the singular 

interval, and the criterion is aλ . For short, if the singular criterion is satisfied, it follows the singular 

control, and if not, it follows the maximum control by PMP. However, implementing the criterion

directly is impossible, because aλ is unknown variable. Therefore, we define singular surface ( )s X

which is only function of states and not of co-states as follow and by condition Eq. (19) 0aλ = if 
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By terminal flight-path-angle constraint Eq. (4), following 
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Before constructing the switching condition of singular 

control, overall structure of optimal policy can be estimated 

by principles of optimality. Since following singular control 

is optimal from backward from above results, there must be 

existed moment that enters towards to the singular interval, 

and the criterion is λα. For short, if the singular criterion is 

satisfied, it follows the singular control, and if not, it follows 

the maximum control by PMP. However, implementing 

the criterion directly is impossible, because λα is unknown 

variable. Therefore, we define singular surface s(X) which 

is only function of states and not of co-states as follow and 

by condition Eq. (19) λα=0 if s=0. In here, 
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0s = . In here, ˆ fγ , ˆ
XfV and ŶfV are estimated terminal flight-path-angle, inertial X and Y direction 

speed following singular control from current states.

ˆf fs γ γ= −  where 
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 = =    +   

(18)

With the results above, the following optimal control known as a bang-singular control can be defined 

as

( )
( )

maxˆBang) sgn , until 0

Singular) s.t ,

f fu u s

du f u
dt

γ γ

γa

= − =

= −
(21)

In case of yaw planar motion, same policy Eq. (21) is optimal with Eq. (23) instead of Eq. (18).
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(23)

Note that, above results turns out to be similar to the rocket ascent optimal guidance [12, 13] with 

some assumptions.

2.3 Modified Thrust Steering Law

Direct applying previous optimal policy for agile turn is not proper, since there always exist 

unmodeled forces on the system such as aerodynamic forces. Based on the bang-singular strategy, 

even if the missile reaches on the singular surface 0s = , due to the surface drift made by the 

unmodeled forces, the maximum correction is required for next moment. This will make control 

chatter which is not desirable. For this reason, angle-of-attack control command is formulated as Eq. 

(24) to steer states to the singular surface with positive gain, rather than applying maximum control as 

Eq. (21).

( )ˆf fu K γ γ= − (24)

That is, the missile predicts the terminal flight-path-angle error (which is equal to s ) as if current 

states are on the optimal singular interval, and the predicted error is compensated through error 

feedback command.

, 

7 

0s = . In here, ˆ fγ , ˆ
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the optimal singular interval, and the predicted error is 

compensated through error feedback command.
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To show ( ) 0f tγ γ− → as ft t→ , it is enough to show ˆ 0f fγ γ− → as ft t→ . Assume 

ˆ 0f fγ γ− → as ft t→ holds. Then by triangular inequality,

( ) ( )ˆ ˆf f f ft tγ γ γ γ γ γ− ≤ − + − (25)

Limit of first term on right hand is equal to zero as Eq. (25). Limit of second term on right hand is 

equal to zero by assumption, and proof is complete. (Only yaw planar motion stability is explained for 

simplicity. Same procedure can be applied to show pitch planar motion stability with minor changes)
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From above result, we define guidance error as follows. Proving guidance error ε decrease as 

boost phase end is enough to show the stability of proposed agile turn law.

ˆf fε γ γ−� (27)

Time derivative of guidance error with consideration of aerodynamic effects is 
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Assume that missile has axisymmetric shape and maximum angle-of-attack is less than 90 deg; the 

sign of lift is identical to the sign of angle-of-attack (without consideration of fin and body rate effect). 

Then sign of Tη and Aη is determined as follow.
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sgn 0
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A

η
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<

= −
(29)

Further, if attitude control can be approximated by first order lag system as Eq. (3), the stability of 

proposed method can be proved indirectly by the following procedure. Closed loop system under 
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Assume that missile has axisymmetric shape and maximum angle-of-attack is less than 90 deg; the 
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From above result, we define guidance error as follows. Proving guidance error ε decrease as 
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Assume that missile has axisymmetric shape and maximum angle-of-attack is less than 90 deg; the 

sign of lift is identical to the sign of angle-of-attack (without consideration of fin and body rate effect). 

Then sign of Tη and Aη is determined as follow.
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From above result, we define guidance error as follows. Proving guidance error ε decrease as 

boost phase end is enough to show the stability of proposed agile turn law.
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Assume that missile has axisymmetric shape and maximum angle-of-attack is less than 90 deg; the 

sign of lift is identical to the sign of angle-of-attack (without consideration of fin and body rate effect). 

Then sign of Tη and Aη is determined as follow.
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Further, if attitude control can be approximated by first order lag system as Eq. (3), the stability of 
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From above result, we define guidance error as follows. Proving guidance error ε decrease as 

boost phase end is enough to show the stability of proposed agile turn law.
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Assume that missile has axisymmetric shape and maximum angle-of-attack is less than 90 deg; the 

sign of lift is identical to the sign of angle-of-attack (without consideration of fin and body rate effect). 

Then sign of Tη and Aη is determined as follow.

( )
( ) ( )

sgn 0

sgn sgn
T

A

η

η a

<

= −
(29)

Further, if attitude control can be approximated by first order lag system as Eq. (3), the stability of 

proposed method can be proved indirectly by the following procedure. Closed loop system under 
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Limit of first term on right hand is equal to zero as Eq. 

(25). Limit of second term on right hand is equal to zero by 

assumption, and proof is complete. (Only yaw planar motion 

stability is explained for simplicity. Same procedure can be 

applied to show pitch planar motion stability with minor 

changes)
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From above result, we define guidance error as follows. Proving guidance error ε decrease as 
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Assume that missile has axisymmetric shape and maximum angle-of-attack is less than 90 deg; the 
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can be proved indirectly by the following procedure. Closed 
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For the unique equilibrium point, negative eigenvalues of A at the point implies asymptotical 

stability of closed loop system by nonlinear stability theorem, and therefore both guidance error and
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For the unique equilibrium point, negative eigenvalues of A at the point implies asymptotical 

stability of closed loop system by nonlinear stability theorem, and therefore both guidance error and

.
(33)
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Similarly partial derivatives of ηA equilibrium point is
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For the unique equilibrium point, negative eigenvalues of A at the point implies asymptotical 

stability of closed loop system by nonlinear stability theorem, and therefore both guidance error and
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From the characteristic equation, sign of both eigenvalues 
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For the unique equilibrium point, negative eigenvalues 

of J at the point implies asymptotical stability of closed 

loop system by nonlinear stability theorem, and therefore 

both guidance error and angle-of-attack will converge to 

zero.

2.4 Terminal Condition as Collision Triangle 

Although the desired flight-path-angle is treated as a 

constant until previous section, the value must be updated 

based on the target information in real time. As mentioned 

previously, to minimize the engagement time, it is ideal 

to maximize the speed during the boost phase satisfying 

intercept condition, and then cruise directly to the target. 

Therefore, the intercept conditions can be calculated using 

well-known collision triangle [17]. However, unlike other 

papers, the proposed method computes the desired flight-

path-angle based on the predicted missile and target state 

information at the end of the boost phase rather than the 

current time.

The predicted position of the missile at the time can be 

calculated by integrating the predicted velocity Eq. (18). 

Assuming a linear mass variation 
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, where subscript M denotes the states belong to missile.

Under the assumption of non-maneuvering target, the predicted inertial positions and velocity at 

burn off time ft are as follows. Note that subscript T means the target.
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, predicted inertial 

velocity and position of missile at burn off time tf are 

computed as follow.
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From the Eq. (36) and (37), the line of sight angle at the 

burn out time is computed as
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and it is used for the angle-of-attack command Eq. (24).

3. Simulation

To validate the proposed agile turn method, simulations are conducted under various engagement 

scenarios. Then the performance of the proposed method is analyzed by comparing existing homing 

guidance law and minimum-time optimal solution through simulation results. The reason to select the 

minimum-time solution for comparison is that the engagement time shortens due to successful agile 

turn by the proposed law. Additionally, the maximum sustainable angle-of-attack depends on the 

missile actuator specification: missile with additional device such as thrust vector control or side 

thrust or jet vane missile has higher angle-of-attack sustainability than missile with fin control only.

The missiles considered in this paper are the ideal one that has such sustainability, so we set the 

maximum angle-of-attack command to be 90 deg [1, 5, 16] .

3.1 Simulation Setup

Referring from [7, 18], parameters of the air-to-air missile are listed in Table 1. For angle-of-attack 

dynamics, first order lag system Eq. (3) is considered.

Table 1. Missile Parameters
Missile Parameters Values [Unit]

T Average Thrust 34000 [N]

c Average burn rate 15 [kg/s]

refS Reference area 20.01824 [m ]

ft Thrust burn out time 2.69 [sec]

τ Angle-of-attack controller time constant 0.15 [sec]

.
(38)
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3.1 Simulation Setup

Referring from [7, 18], parameters of the air-to-air missile 

are listed in Table 1. For angle-of-attack dynamics, first order 

lag system Eq. (3) is considered.

Lift and drag coefficients are constructed as a polynomial 

equation as Eq. (40) and these coefficients are adopted from 

the same research [14].

12 

Lift and drag coefficients are constructed as a polynomial equation as Eq. (35) and these coefficients

are adopted from the same research [14].

( ) ( )
9 9

0 0
,k k

L Lk D Dk
k k

C C C Ca a a a
= =

= =∑ ∑ (35)

Table 2. Lift and Drag Coefficient
Parameter Values Parameter Values Parameter Values Parameter Values

0LC 0 5LC 41.207 0DC 0.171 5DC 0

1LC 9.679 6LC 0 1DC -2.809 6DC -17.66

2LC 0 7LC 16.34 2DC 11.582 7DC 0

3LC 32.728 8LC 0 3DC 0 8DC 3.2816

4LC 0 9LC -2.272 4DC 24.809 9DC 0

Proposed methods (with gain 3K = ), PN guidance law (with navigation gain 5N = ), and optimal 

trajectory minimizing total time to intercept are compared for each scenario. In case of simulating 

proposed algorithm, missile uses the method only in the boost phase, and uses PN guidance law after 

end of boost phase (Named as Agile Turn and Proportional Navigation Guidance: ATPNG). Lastly, the 

pseudo-spectral method (PSM) is used to solve a minimum intercept time optimal control problem, 

and GPOPS-II is used to solve the problem [19].

3.2 Simulation Results

This paper considers three different yaw planar engagement scenarios with high off-boresight angle. 

Each scenario requires missile to have agile turn capacity for effective interception. For all scenarios,

same initial conditions of missiles are used and listed at Table 3. The engagement holds yaw plane at 

an altitude of 5000h m= , and corresponding air density at the altitude is 30.7655kg/mρ = . In 

addition, 3K = is used for simulation.

Table 3. Missile Initial Conditions 

0MV 0Mγ 0MX 0MY 0Ma

300 [m/s] 0 [deg] 0 [m] 0 [m] 0 [deg]

.
(40)
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navigation gain N=5), and optimal trajectory minimizing 

total time to intercept are compared for each scenario. In case 

of simulating proposed algorithm, missile uses the method 

only in the boost phase, and uses PN guidance law after 

end of boost phase (Named as Agile Turn and Proportional 

Navigation Guidance: ATPNG). Lastly, the pseudo-spectral 

method (PSM) is used to solve a minimum intercept time 

optimal control problem, and GPOPS-II is used to solve the 

problem [19].

3.2 Simulation Results

This paper considers three different yaw planar 

engagement scenarios with high off-boresight angle. 

Each scenario requires missile to have agile turn capacity 

for effective interception. For all scenarios, same initial 

conditions of missiles are used and listed at Table 3. The 

engagement holds yaw plane at an altitude of h=5000m, and 

corresponding air density at the altitude is ρ=0.7655kg/m3. In 

addition, K=3 is used for simulation.

3.2.1 Scenario Case 1

The first scenario is yaw planar engagement with around 

90 deg of aspect and bearing angle, and initial conditions 

of missiles and the targets are listed in Table 4. Simulation 

results and missile performance are shown at Fig. 1 and 

Table 5, respectively.

3.2.2 Scenario Case 2

Initial conditions of target for the second scenario are 

listed in Table 6. Simulation results and missile performance 

are shown at Fig. 2 and Table 7, respectively.

 

3.2.3 Scenario Case 3

The last scenario is engagement with around 180 deg of 

aspect and bearing angle, and initial conditions of missiles 

and the targets are listed in Table 8. Simulation results 

and missile performance are shown at Fig. 3 and Table 9, 

respectively.

3.3 Simulation Results Analysis

From the results in Section 3.2, using the proposed 

method to complete agile turn in the boost phase and 

using the homing guidance law has better results than 

using the homing guidance law from the beginning in all 

Table 2. Lift and Drag Coefficient
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scenarios. From the results of the scenario 1, the proposed 

law shows great performance against the existing guidance. 

This is because, the proposed law constructs collision 

triangle, which is based on the predicted states. That is, the 

proposed law performs better than any guidance law that 

does not consider the boost effect. The results of scenario 

2 and 3 show the same tendency. Especially, in the case of 

the scenario 3, PN guidance law fails to intercept the target. 

Also, referring to the minimum time optimal trajectory, the 

proposed method shows performance close to the optimal 

result in the respective scenarios. All scenario results show 

that the proposed law commands to sustain the maximum 

angle-of-attack more than the optimal. The main reason of the 

difference is aerodynamic effects; the law is derived without 

consideration of aerodynamic force. That is, the guidance 

error is emphasized by neglecting such forces that give 

positive effect for turning. If the approximated aerodynamic 

model is given [15], that can be adopted to the proposed law. 

3.4 Gain Selection

Referring to the section 2.3, infinite gain is optimal under 

no aerodynamic forces, and the positivity of the gain is 

required to make system stable. According to the change of 

the gain, the performance of the proposed law at scenario #1 

and #2 show following tendency. 

As the guidance error is emphasized like mentioned in 

previous section, a slow correction (smaller gain) will show 
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3.2.1 Scenario Case 1

The first scenario is yaw planar engagement with around 90 deg of aspect and bearing angle, and 

initial conditions of missiles and the targets are listed in Table 4. Simulation results and missile 

performance are shown at Figure 1 and Table 5, respectively.

Table 4. Target Initial Conditions for Scenario 1 

0TV 0Tγ 0TX 0TY Tγ

300 [m/s] 30 [deg] 350 [m] 2000 [m] 11.241[deg/s]

Table 5. Performance Index of each algorithm for Scenario 1
Index ATPNG Optimal PNG

[sec]ft 3.9389 3.8870 4.8643

[m/s]fV 1135.5 1144.3 920.0

Fig. 1. (a) Trajectory, (b) Velocity, (c) FPA, (d) AoA/AoA Command for Scenario 1
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better performance than a fast correction (higher gain) 

when positive angle-of-attack generates positive lift within 

the region of interest. However, the closed loop guidance 

error will converge to zero slowly under the smaller gain, 

the gain must exceed a certain lower bound. Unfortunately, 

such tendency is a function of operating environment, 

missile parameters, initial conditions, etc., and therefore 

an appropriate gain should be selected through numerical 

search method.

4. Conclusion

Velocity-maximizing control law for agile turn of missile 

at the boost phase is proposed, based on the optimal 

control theory, and its stability is proved. Conditions of 

collision triangle are reviewed and corresponding results 

are imposed to terminal constraint for the proposed control 

law. Various initial engagement scenarios are considered, 

and simulation results from the proposed law, PN guidance, 

and time minimization optimal trajectory are analyzed for 

each scenario. The simulation results verify that using the 

proposed method during the boost phase is effective. 
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3.2.2 Scenario Case 2

Initial conditions of target for the second scenario are listed in Table 6. Simulation results and 

missile performance are shown at Figure 2 and Table 7, respectively.

Table 6. Target Initial Conditions for Scenario 2 

0TV 0Tγ 0TX 0TY Tγ

300 [m/s] 180 [deg] 0 [m] 700 [m] 5.621[deg /s]

Table 7. Performance Index of each algorithm for Scenario 2
Index ATPNG Optimal PNG

[sec]ft 3.5998 3.5870 4.2759

[m/s]fV 758.2 756.6 650.5

Fig. 2. (a) Trajectory, (b) Velocity, (c) FPA, (d) AoA/AoA Command for Scenario 2
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3.2.3 Scenario Case 3

The last scenario is engagement with around 180 deg of aspect and bearing angle, and initial 

conditions of missiles and the targets are listed in Table 8. Simulation results and missile performance 

are shown at Figure 3 and Table 9, respectively.

Table 8. Target Initial Conditions for Scenario 3 

0TV 0Tγ 0TX 0TY Tγ

300 [m/s] 30 [deg]− 1300 [m]− 750 [m] 9.368 [deg /s]−

Table 9. Performance Index of each algorithm for Scenario 3
Index ATPNG Optimal PNG

[sec]ft 3.2035 3.1914 X

[m/s]fV 675.1 685.2 X

Fig. 3. (a) Trajectory, (b) Velocity, (c) FPA, (d) AoA/AoA Command for Scenario 3
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3.3 Simulation Results Analysis

From the results in Section 3.2, using the proposed method to complete agile turn in the boost phase 

and using the homing guidance law has better results than using the homing guidance law from the 

beginning in all scenarios. From the results of the scenario 1, the proposed law shows great 

performance against the existing guidance. This is because, the proposed law constructs collision 

triangle, which is based on the predicted states. That is, the proposed law performs better than any 

guidance law that does not consider the boost effect. The results of scenario 2 and 3 show the same 

tendency. Especially, in the case of the scenario 3, PN guidance law fails to intercept the target. 

Also, referring to the minimum time optimal trajectory, the proposed method shows performance 

close to the optimal result in the respective scenarios. All scenario results show that the proposed law 

commands to sustain the maximum angle-of-attack more than the optimal. The main reason of the 

difference is aerodynamic effects; the law is derived without consideration of aerodynamic force. That 

is, the guidance error is emphasized by neglecting such forces that give positive effect for turning. If 

the approximated aerodynamic model is given [15], that can be adopted to the proposed law. 

3.4 Gain Selection

Referring to the section 2.3, infinite gain is optimal under no aerodynamic forces, and the positivity 

of the gain is required to make system stable. According to the change of the gain, the performance of 

the proposed law at scenario #1 and #2 show following tendency.

Fig. 4. (a) Trajectory, (b) Performance with various K gain for Scenario 1
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Fig. 5. (a) Trajectory, (b) Performance with various K gain for Scenario 2

As the guidance error is emphasized like mentioned in previous section, a slow correction (smaller 

gain) will show better performance than a fast correction (higher gain) when positive angle-of-attack 

generates positive lift within the region of interest. However, the closed loop guidance error will 

converge to zero slowly under the smaller gain, the gain must exceed a certain lower bound. 

Unfortunately, such tendency is a function of operating environment, missile parameters, initial 

conditions, etc., and therefore an appropriate gain should be selected through numerical search 

method.

4. Conclusion

Velocity-maximizing control law for agile turn of missile at the boost phase is proposed, based on the

optimal control theory, and its stability is proved. Conditions of collision triangle are reviewed and 

corresponding results are imposed to terminal constraint for the proposed control law. Various initial 

engagement scenarios are considered, and simulation results from the proposed law, PN guidance, and 

time minimization optimal trajectory are analyzed for each scenario. The simulation results verify that 

using the proposed method during the boost phase is effective.
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