• Title/Summary/Keyword: aggregate size effect

Search Result 144, Processing Time 0.026 seconds

The Quality Status of Aggregate for Domestic Ready-mixed Concrete and the Effect of Aggregate Quality in Concrete

  • Kim, Yong-Ro;Lee, Jae-Hyun;Min, Choong-Siek;Park, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • This research examined the effect of the quality of aggregate on concrete workability and compressive strength through an investigation into regional aggregate used in domestic ready mixed concrete plants. Through the research, it was found that aggregate for ready mixed concrete shows poor quality overall. The main factor of deterioration in the quality of the concrete is the particle size of fine aggregate and fine particle content in coarse aggregate. The quality of aggregate significantly influences concrete's workability, which is defined based on 0.08mm passage related with powder and absorption. In addition, poor aggregate quality leads to increased water content in concrete to secure workability, which is related with a decline in the compressive strength and durability of concrete.

A damage mechanics based random-aggregate mesoscale model for concrete fracture and size effect analysis

  • Ni Zhen;Xudong Qian
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.147-162
    • /
    • 2024
  • This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.

Mix Design for Pervious Recycled Aggregate Concrete

  • Sriravindrarajah, Rasiah;Wang, Neo Derek Huai;Ervin, Lai Jian Wen
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.239-246
    • /
    • 2012
  • Pervious concrete is a tailored-property concrete with high water permeability which allow the passage of water to flow through easily through the existing interconnected large pore structure. This paper reports the results of an experimental investigation into the development of pervious concrete with reduced cement content and recycled concrete aggregate for sustainable permeable pavement construction. High fineness ground granulated blast furnace slag was used to replace up to 70 % cement by weight. The properties of the pervious concrete were evaluated by determining the compressive strength at 7 and 28 days, void content and water permeability under falling head. The compressive strength of pervious concrete increased with a reduction in the maximum aggregate size from 20 to 13 mm. The relationship between 28-day compressive strength and porosity for pervious concrete was adversely affected by the use of recycled concrete aggregate instead of natural aggregate. However, the binder materials type, age, aggregate size and test specimen shape had marginal effect on the strength-porosity relationship. The results also showed that the water permeability of pervious concrete is primarily influenced by the porosity and not affected by the use of recycled concrete aggregate in place of natural aggregate. The empirical inter-relationships developed among porosity, compressive strength and water permeability could be used in the mix design of pervious concrete with either natural or recycled concrete aggregates to meet the specification requirements of compressive strength and water permeability.

Fundamental Study on the Application of a Surface Layer using Cold Central-Plant Recycling (플랜트 생산 재활용 상온 혼합물의 도로 표층 적용성에 관한 기초연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.69-76
    • /
    • 2018
  • PURPOSES : This study determined the optimal usage rate of RAP (reclaimed asphalt pavement) using cold central-plant recycling (CCPR) on a road-surface layer. In addition, a mixture-aggregate gradation design and a curing method based on the proposed rate for the surface-layer mix design were proposed. METHODS : First, current research trends were investigated by analyzing the optimum moisture content, mix design, and quality standards for surface layers in Korea and abroad. To analyze the aggregate characteristics of the RAP, its aggregate-size characteristics were analyzed through the combustion asphalt content test and the aggregate sieve analysis test. Moreover, aggregate-segregation experiments were performed to examine the possibility of RAP aggregate segregation from field compaction and vehicle traffic. After confirming the RAP quality standards, coarse aggregate and fine aggregate, aggregate-gradation design and quality tests were conducted for mixtures with 40% and 50% RAP usage. The optimum moisture content of the surface-layer mixture containing RAP was tested, as was the evapotranspiration effect on the surface-layer mixture of the optimum moisture content. RESULTS : After analyzing the RAP recycled aggregate size and extraction aggregate size, 13-8mm aggregate was found to be mostly 8mm aggregate after combustion. After using surface-chipping and mixing methods to examine the possibility of RAP aggregate segregation, it was found that the mixing method contributed very little for 3.32%, and because the surface-chipping method applied compaction energy directly as the maximum assumption the separation ratio was 15.46%. However, the composite aggregate gradation did not change. Using a 40% RAP aggregate rate on the surface-layer mixture for cold central-plant recycling satisfied the Abroad quality standard. The optimum moisture content of the surface-layer mixture was found to be 7.9% using the modified Marshall compaction test. It was found that the mixture was over 90% cured after curing at $60^{\circ}C$ for two days. CONCLUSIONS : To use the cold central-plant recycling mixture on a road-surface layer, a mixture-aggregate gradation design was proposed as the RAP recycled aggregate size without considering aggregate segregation, and the RAP optimal usage rate was 40%. In addition, the modified Marshall compaction test was used to determine the optimum moisture content as a mix-design parameter, and the curing method was adapted using the method recommended by Asphalt Recycling & Reclaiming Association (ARRA).

A novel meso-mechanical model for concrete fracture

  • Ince, R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.91-112
    • /
    • 2004
  • Concrete is a composite material and at meso-level, may be assumed to be composed of three phases: aggregate, mortar-matrix and aggregate-matrix interface. It is postulated herein that although non-linear material parameters are generally used to model this composite structure by finite element method, linear elastic fracture mechanics principles can be used for modelling at the meso level, if the properties of all three phases are known. For this reason, a novel meso-mechanical approach for concrete fracture which uses the composite material model with distributed-phase for elastic properties of phases and considers the size effect according to linear elastic fracture mechanics for strength properties of phases is presented in this paper. Consequently, the developed model needs two parameters such as compressive strength and maximum grain size of concrete. The model is applied to three most popular fracture mechanics approaches for concrete namely the two-parameter model, the effective crack model and the size effect model. It is concluded that the developed model well agrees with considered approaches.

Effect of the Replacement of Recycled Coarse Aggregates Under 13mm on Engineering Properties of the Concrete (13mm 이하 순환굵은골재 치환이 콘크리트의 공학적 특성에 미치는 영향)

  • Han, Min-Cheol;Kang, Byeong-Heo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • The objective of this paper is to investigate experimentally the effect of the substitution of recycled aggregates under 13mm on the properties of the concrete using coarse aggregate with size of 13~25mm. Recycled aggregate under 13mm were substituted to the concrete ranged from 10% to 100%. To compare the properties with the case of recycled aggregate, crushed stone with smaller than 13mm was also substituted to the concrete by 20% and 40%. Test results showed that increase of recycled aggregate under 13mm resulted in the increase of slump and compressive strength compared with plain mixture, which was made with only aggregate with 13~25mm size. This is due to the dense gradation of aggregate in association with addition of relatively small particle. It is thought that the use of recycled aggregate under 13mm along with 30% contributes to the quality improvement of the concrete made with only 13~25mm aggregate.

Effect of Aggregate on Mechanical Properties of Ultra-High Strength Concrete Exposed to High Temperature (고온을 받은 초고강도 콘크리트의 역학적 특성에 관한 골재의 영향)

  • Kim, Young-Sun;Choi, Hyoung-Gil;Ohmiya, Yoshifumi;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.431-440
    • /
    • 2011
  • Concrete structures exposed to fire produce changes in their internal structure, resulting in their service life reduction due to the deterioration of its strength and performance capacity. The deterioration level are dependent on the temperature, exposure time, concrete mix proportions, aggregate property, and material properties. This study was performed to evaluate the thermal behavior of ultra-high strength concrete for the parameters of water to cement ratio (compressive strength), fine to total aggregate ratio, and maximum coarse aggregate size. At room temperature and $500^{\circ}C$, tests of ultrasonic pulse velocity, resonance frequency, static modulus of elasticity, and compressive strength are performed using ${\varnothing}100{\times}200\;mm$ cylindrical concrete specimens. The results showed that the residual mechanical properties of ultra-high strength concrete heated to $500^{\circ}C$ is influenced by variation of a water to binder ratio, fine to total aggregate ratio, and maximum coarse aggregate size.

Application of Ferronickel Slag Aggregate to Improve Workability and Strength of Non-Sintered Cement Mortar (비소성 시멘트 모르타르의 작업성 및 강도 개선을 위한 페로니켈슬래그 골재의 적용방안)

  • Jang, Kyung-Soo;Na, Hyeong-Won;Hyung, Won-Gil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.309-310
    • /
    • 2023
  • Slag and ash generally have a higher powder degree than portland cement, so workability may deteriorate under the same unit quantity condition, and strength and durability decrease when the unit quantity is increased. At this time, if an aggregate having a low water absorption and an appropriate particle size is used to recover the loss of strength, it can contribute to reducing the unit quantity of the binder. Therefore, for the purpose of improving the workability and strength of non-sintered cement mortar using slag and ash, ferro nikel slag whose particle size was adjusted was used as an aggregate and its applicability was identified. In this experimental condition, it was confirmed that non-sintered cement mortar tends to improve workability and secure strength when ferro nikel slag having various particle size distributions is used as an aggregate. This can be analyzed as the effect of ferro nikel slag material properties including glassy properties and mixing conditions with a wide particle size distribution.

  • PDF

Effect of Grading of Coarse Aggregate on the Fundamental Properties of Concrete (굵은골재의 입도분포에 따른 콘크리트의 기초적 특성)

  • Kang, Byung-Hoi;Zhao, Yang;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.46-47
    • /
    • 2013
  • This study investigates the effect of a grading of aggregate on the properties of concrete. It is a common sense in Korea that the production of coarse aggregate in ready mixed concrete industry excludes particular aggregate size ranged from 5 mm to 13 mm for saving the production cost. This causes a gap grading of the aggregate for concrete, which can lead to the increase of unit water, the development of drying shrinkage-induced crack and the reduction of compressive strength. In this study, conventional aggregate obtained from a ready mixed concrete factory and the aggregate with a modified grading produced in lab. condition were prepared. Results showed that a good grading of aggregate (i.e., the ratio of 5~13 mm and 13~25 mm is 6 to 4) produced in the lab. condition significantly improved the slump and the compressive strength of the concrete.

  • PDF

Particle Size, Morphology and Color Characteristics of C.I. Pigment Red 57:1 : 1. Effect of Synthesis Conditions

  • Seo, Hee Sung;Lee, Hyun Kyung;Yoo, Eui Sang
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.229-244
    • /
    • 2015
  • The effects of synthesis conditions on characteristics of the calcium-azo complex pigment, C.I. Pigment Red 57:1, were studied. It was mainly considered that the industrially required synthesis conditions for lowering electrical conductivity of the pigment solution keeping pigment quality such as particle size and color characteristics. Three parameters were chosen as control factors during the synthesis. The first was the amount of hydrochloric acid added to transform sodium nitrite into nitrous acid. The second was the amount of calcium chloride added to insolubilize the synthesized azo dye. The final factor was pH control during the coupling reaction. The electrical conductivity and pigment aggregate particle size were dependent on the amount of hydrochloric acid and calcium chloride. Higher HCl concentration gave brighter yellowish-red color because of smaller particle aggregate size and narrower size distribution. Amount of charged ions in the synthesis process might affect the "lake" formation resulting different particle aggregate size and color shade.