• Title/Summary/Keyword: aggregate resources

Search Result 559, Processing Time 0.026 seconds

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

Characteristics of Foam Concrete with Application of Mineral Admixture (무기혼화재 적용에 따른 기포콘크리트의 특성)

  • Kim, Sang-Chel;Kim, Yun-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • self-loading, various problems related to construction can be solved as well as the save of construction cost. Thus, this study has an aim of applying foam concrete to structural purpose by adding bottom ash as a reinforcing material like fine aggregate, in contrast to conventional non-structural usage such as soundproofing or insulating materials. In addition, it was evaluated in terms of unit volume weight, flow value, air void, water absorption and dosage of foam agent wether replacement of cement by granulated blast furnace slag or fly-ash has an effect on the material characteristics of foam concrete. As results of experiments, it can be found that the increase of fine aggregate ratio, that is to say, the increase of bottom ash results in the increase of unit volume weight, while decreasing air void and flow value. But, appropriate addition of bottom ash to foam concrete makes it easy to control a homogeneous and uniform quality in foam concrete due to less sensitive to bubbles. As the replacement ratio of mineral admixtures such as granulated blast furnace slag and fly-ash increases, as unit volume weight tends to decrease. In the meanwhile, serious effects were shown on fluidity of foam concrete when more than limit of replacement ratio was applied.

  • PDF

A Study on the Quality Properties of Recycled Sand by Produced Dry Manufacturing System and Wet Manufacturing System (건식생산 및 습식생산시스템에 의해 생산된 순환모래의 품질특성에 관한 연구)

  • Song, Ha-Young;Lee, Sang-Soo;Lee, Ji-Hwan;Lee, Yun-Seong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.74-84
    • /
    • 2009
  • The study aims that high quality recycled sand by wet manufacturing system can be used in practical way through basic material property. The basic material property test was done by 4 categories, dry manufacturing system (1) tandem and (2) parallel, wet manufacturing system (3) large capacity and (4) small capacity. RS-IV is the final production of (1) to (4) method, it is tested via KS F 2573 (recycled fine aggregate). RS-IV is satisfied with 4 items, those are absolute dry density, 0.08mm sieve throughput, clay lump amount, and organic impurity substance content. However, absorptivity item has problem in (1) and (2) method, (3) and (4) method are confirmed with norms 5% low. Also, the production quality of wet manufacturing system is better than dry manufacturing system in absolute dry density, absorptivity, 0.08mm sieve throughput, and clay lump amount.

  • PDF

Analysis of Permeability Characteristics for Fly Ash Concrete According to Aggregate Size and Mixing Ratio (골재크기와 배합비에 따른 플라이애시 콘크리트의 투기특성 분석)

  • Eun-A Seo;Do-Gyeum Kim;Chul-Woo Jung;Ho-Jae Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.400-406
    • /
    • 2023
  • In this study, the relationship between the material properties and air permeability characteristics was examined, an experimental method to analyze the air permeability characteristics was presented, and experimental results were derived. The effects of compressive strength and apparent density of hardened concrete on air permeability characteristics were evaluated experimentally. Focusing on the mix proportions used in nuclear power plant concrete structures, concrete test specimens were manufactured and air permeability characteristics were measured according to changes in binder, maximum aggregate size, and water-binder ratio. The apparent density was over 2,400 kg/m3 for the OPC mix and the FA-35 mix, and the air permeability for both mixes were low, in the range of 0.1-0.2 L/min. On the other hand, in the case of the combination of FA-40, FA-45, and FA-M, the apparent density was measured to be less than 2,400 kg/m3 and the air permeability was measured to be more than 0.3 L/min, experimentally verifying that the apparent density is an important factor in air permeability characteristics.

Natural Sand in Korea - Quality Evaluation - (한국의 모래 -품질평가-)

  • Sei Sun Hong;Jin Young Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.185-204
    • /
    • 2024
  • This study was conducted for evaluation the geological, physical, and chemical properties of domestic sand by analyzing about 4,800 quality data of natural sand from river and land area surveyed until 2023 through the aggregate resource survey conducted by the Ministry of Land, Infrastructure and Transport. The average depth of the Quaternary unconsolidated sedimentary layer in Korea, which includes a sand layer, is about 10m (maximum depth 66m). The thickness of the sand layer within the sedimentary layer is most dominant in the range of 0.5m to 4.0m. This accounts for about 70% of the entire sand layer. In the sand layer, the ratio of sand, gravel, and clay is 60:20:10. Regardless of the provenance or geology, the sand is mainly composed of quartz, plagioclase, and K-feldspar, and the minor minerals are muscovite, biotite, chlorite, magnetite, epidote. The sand includes in 45~75% of quartz, 5~20% of plagioclase and K-feldspar, each other. And other minor minerals are included in 10%. The average grain size of sand is 0.5mm to 1.0mm, which accounts for 44% of sand samples. The water absorption rate and soundness are estimated to be suitable for aggregate quality standard in almost all sand, and the absolute dry density is suitable for 66%.

Occurrence and Formation Environment of Boron Deposits in Turkey (터키 붕소광상의 부존특성 및 형성환경)

  • Koh, Sang-Mo;Lee, Bum Han;Lee, Gilljae;Cicek, Murat
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.541-549
    • /
    • 2014
  • The annual borate production in Turkey is about 3 million tons, which occupies approximately 61 percent of total annual world production. Turkey has five boron deposits including Bigadic, Emet, Kestelek, Kirka, and Sultancayir. At present, Bigadic, Emet, and Kirka deposits are operating. Kirka boron deposit is distributed within volcanoclatic sedimentary group as mainly layered, rarely brecciated and massive types. Major borate is borax associated with colemanite and ulexite. They show a horizontal symmetrical zonation from Na borate (borax) in the center of deposit to Na-Ca borate (ulexite) and Ca-borate (colemanite) in margin. Bigadic boron deposit is known as the largest colemanite deposit in the world. This deposit occurs as two borate bearing horizons in Miocene volcanoclastic sedimentary group. Thickness ranges from several meters to 100 meter with a length of several hundreds meters. Borate ore bodies which are mainly composed of colemanite and ulexite are alternated with claystone, mudstone, tuff and layered limestone as lenticular shape. Sultancayir boron deposit is mainly distributed within gray limestone. Main borate minerals of this deposit are pandermite and ulexite. Pandermite and ulexite occur as colloform aggregate and small veinlet, respectively. Turkish boron deposits are evaporite deposit which were formed in Miocene playa-lake environment. Boron was supplied to the deposits by the volcanic and hydrothermal activities.

A study on the physical properties of fine aggregates of Bonghwang-cheon in the Geum River Basin, Korea (금강유역의 봉황천에 부존하는 잔골재 물성연구)

  • Oh, Keun-Chang;Kim, Ju-Yong;Yang, Dong-Yoon;Lee, Jin-Young;Hong, Sei-Sun;Kim, Jeong-Chan
    • The Korean Journal of Quaternary Research
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • In this study we experiment on sand deposits (tine aggregates) taken from the old river-bed of the Bonghwang-cheon of Geum River Basin, and evaluate physical properties of fine aggregates in comparison to the KS quality regulation. As a result of experimentation, particle size of fine aggregates is generally smaller in the downstream area than in the upstream area. In addition, physical properties of the fine aggregates tend to depend on the bedrock type. Physical properties of fine aggregates show a strong positive correlation with particle size of old river-bed sediments. Finally, the general physical properties of fine aggregates are conformable to the KS quality regulation, except density and proportion of materials finer than $75{\mu}m$.

  • PDF

Control of YAG($Y_{3}Al_{5]O_{12}$) Particle Shape prepared by Sol-Gel Process (솔-젤 공정(工程)을 이용(利用)하여 제조(製造)된 YAG($Y_{3}Al_{5}O_{12}$) 분말 입형제어)

  • Park, Jin-Tae;Kim, Chul-Joo;Yoon, Ho-Sung;Sohn, Jung-Soo
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.52-59
    • /
    • 2008
  • Sol-gel process applied in this study was carried out by chelation of metal ions and citric acid. From the results of thermal gravimetric analysis and XRD analysis of gel powder obtained through sol-gel and heat treatment, gel powders are mostly amorphous, and crystallize completely at $900^{\circ}C$, and the crystalline structure of YAG increases with increasing calcinations temperature. Since YAG prepared by sol-gel & calcinations process was porous, and the sape and size was irregular and nonuniform, the shape and size of YAG powder had to be controlled. Therefore the effects of organic materials such as ethylene glycol and surfactant on the crystalline structure of YAG powder were investigated. Polyesterification of ethylene glycol and citric acid separated reaction area of metal ions in the solution and decreased the size of YAG primary particles. The addition of Igepal 630 as surfactant formed the droplet in the solution, and increased the size of primary particles which forms the aggregate of YAG In order to obtain monodispersed YAG particles of uniform size, gel powder prepared with organic materials had to be milled before calcination. And milling process was very important for obtaining YAG of uniform size.

Long- Term Durability of Construction Structure and Effective Use of Technology for Construction Waste (건설구조물(建設構造物)의 장수명화(長壽命化)와 건설폐기물(建設廢棄物)의 유효이용기술(有效利用技術))

  • Kim, Gyu-Yong;Choi, Hyeong-Gil;Nam, Jung-Su;Song, Ha-Young;Lee, Do-Heun
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.11-19
    • /
    • 2009
  • Recently the problem of global environment is became by social issue. Accordingly the interests to recycling and saving of resources are growing from daily life to varieties field of industry. To preserve the global environment, prevent global warming, environmental destruction, environmental pollution by wastes, the drain of aggregate, plasticity energy of cement and decrease in carbon dioxide are an urgent problem that must be resolved. So there is to a field of building industry and stands but on the inside of the building the many double meaning resources usefully, applies. Also the seller masterpiece building where the service life is long planned is safe and comfortably, maintenance, suppresses the construction which is not necessary is unnecessary. Also the seller masterpiece building where the service life is long planned is safe and comfortably, maintenance, suppresses the construction which is not necessary is unnecessary. By revitalizing effective use of limited earth resources, recycling and controling production of construction waste, this study introduced to a method for Long-Term Durability of Construction Structure and Effective Use of Technology for Construction Waste considering architectural demand and earth environment. It is for reduction of an earth environment load from the side of construction production and performance design of a structure.

Investigation on the Enhancement of the Flotation Performance in Fine Molybdenum Particles Based on the Probability of Collision Model (충돌확률 모델에 의한 미립 몰리브덴광의 부유선별 효율 향상 연구)

  • Jisu Yang;Kyoungkeun Yoo;Joobeom Seo;Seongsoo Han
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.38-47
    • /
    • 2024
  • Molybdenite is the primary molybdenum resource and is extracted via flotation due to its unique hydrophobic surface. Meanwhile, the grade and crystal size of mined molybdenite are decreasing. As a result, the size of the molybdenum ore required for liberation is decreasing, and the flotation process's feed size input is also decreasing. Therefore, in order to secure molybdenum, it is necessary to perform research on the flotation for the fine molybdenite. In this study, we developed a method to enhance the flotation efficiency of fine molybdenite particles in the range of 5-30 ㎛. The methodology involved implementing bubble size reduction and particle aggregation. Through simulations of bubble-particle collision probability and flotation experiments, we were able to find the ranges of bubble size and particle aggregate size that make fine particles float more effectively. This range provided the conditions for effective flotation of fine molybdenite particles. Therefore, we will implement the flotation conditions established in this study for fine molybdenum ore to improve the flotation process in molybdenum mineral processing plants in the future.