• Title/Summary/Keyword: aggregate density

Search Result 304, Processing Time 0.022 seconds

Development of the Testing Method for Impurity Content in Recycled Aggregate for Concrete Structure (구조체 콘크리트용 순화골재의 이물질 함유량 시험방법 개발)

  • Lee, Do-Heun;Jun, Myoung-Hoon;Jaung, Jae-Dong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.72-80
    • /
    • 2005
  • A recycled aggregate contains impurities that affect negative effects on physical properties of concrete. Therefore, a test method for examining impurities content in recycled aggregate is necessary before use of recycled aggregate. In this study, the test method by visual examination for separating impurities in recycled fine and coarse aggregates was developed. The results of the test are as follow: 1. The current KS F 2576 was necessary for comprehensive revision including types of tested recycled aggregate, definition of terminology, quantity of sample, and test method. 2. Visual examination is appropriate for larger than impurity panicle size of 1.2mm, and the larger panicle size the shorter time was required. 3. For the impurity content test by visual examination, the easiness and accuracy of the test can be obtained from the condition of sample weight of 30 grams with particle size of 2.5mm to 5mm for recycled fine aggregate and the condition of sample weight of 1 kilogram with panicle size of larger than 5mm for recycled coarse aggregate.

  • PDF

A Study on Quality Improvement and Verification of Recycled Coarse Aggregate for Concrete Using an Impact Crusher with Radial Rotation (방사형 회전이 추가된 임팩트 크러셔를 이용한 콘크리트용 순환굵은골재 품질향상 및 검증 연구)

  • Jeon, Duk-Woo;Kim, Yong-Seong;Jeon, Chan-Soo;Choi, Won-Young;Cho, Won-Ig
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The purpose of this study is to develop an impact crusher with a radial rotating plate installed at the bottom, which is a shock absorber that can produce high-quality recycled coarse aggregate for concrete and to verify the effect of improving the quality performance of recycled coarse aggregate and its applicability through concrete tests. As a result, it showed improved quality in all items such as absolute dry density, absorption rate, abrasion resistance, Particle shape judgment rate, amount lost in the 0.08 mm sieve passing test, alkali aggregate reaction, clay mass, stability, and impurity content, and it was found to meet the criteria of recycled aggregate quality standards. In addition, the air volume and slump of concrete to which recycled coarse aggregate is applied meet all domestic standards. According to the test results of the compressive strength characteristics by age of concrete according to the mixing ratio of the recycled coarse aggregate, it was confirmed that the mixing ratio of the recycled coarse aggregate was applicable up to 60 %.

Properties of Heavyweight Concrete for Radiation Shielding (방사선 차폐용 중량콘크리트의 기초 특성)

  • Yang, Seung-Kyu;Um, Tai-Sun;Lee, Jong-Ryul;Kim, Yong-Ho;Wu, Sang-Ik;Kim, Tae-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.561-564
    • /
    • 2008
  • Concrete is considered to be one of the excellent and versatile shielding material and is widely used for the radiation shielding material. Specially, heavyweight(or high density) concrete is used in counter weights of bascule and lift bridges, but it is generally used in radiation shielding structures and differ from normal weight concrete by having a higher density and special compositions to improve its attenuation properties. Thorough examination and evaluation of heavyweight aggregate sources are necessary to obtain material suitable for the type of shielding required. Therefore, this paper aims to study mechanical properties of heavyweight concrete by using normal cement, natural and heavyweight aggregate.

  • PDF

Influence of binder, aggregate and compaction techniques on the properties of single-sized pervious concrete

  • Juradin, Sandra;Ostojic-Skomrlj, Nives;Brnas, Ivan;Prolic, Marina
    • Advances in concrete construction
    • /
    • v.10 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • In this paper, 18 single-sized pervious concrete mixtures were tested. The mixtures were prepared by altering: the amount and type of binder, type of aggregate, and the method of compaction. Concrete was compacted in layers in one of five different consolidation techniques: with standard tamping rod, wooden lath, concrete cylinder, or vibration of 12 and 40 s. Tests carried out on the specimens were: slump, density, porosity, coefficients of permeability, compressive strength and splitting strength. The relationships between porosity-density and porosity-strength were established. Two mixtures were selected for the preparation of test slabs on different subgrades and their permeability was tested according to ASTM C 1701-09 Standard. By comparing laboratory and field tests of permeability, it was concluded that the subgrade affects the test results. Measurements on the test slabs were repeated after 1 and 2 years of installation.

Impacts of siltstone rocks on the ordinary concrete's physical, mechanical and gamma-ray shielding properties: An experimental examination

  • R.S. Aita;K.A. Mahmoud;H.A. Abdel Ghany;E.M. Ibrahim;M.G. El-Feky;I.E. El Aassy
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2063-2070
    • /
    • 2024
  • A series of ordinary concrete is casted in order to examine the influence of the manganiferous siltstone rocks on the physical, mechanical, and gamma-ray shielding properties. Thus, a partial replacement for the coarse aggregates by siltstone rocks was performed during the fabrication of the currently ordinary concrete. The test revealed that raising the siltstone concentration improved the mechanical characteristics and density of the developed concretes. The addition of siltstone rocks at concentrations ranging from 0 to 40 wt% of the coarse aggregate concentration raises the density of the concrete from 2.05 g/cm3 to 2.3 g/cm3. Furthermore, partial substitution of basalt with siltstone rocks improves gamma-ray shielding properties. The experimental results for the linear attenuation coefficient show an increase in its value from 0.146 cm1 to 0.160 cm-1 when the siltstone concentration is increased between 0 and 40 wt% at 0.662 MeV. Furthermore, increasing the concentrations of siltstone affected the half-value thickness, which varied between 4.759 and 4.319 cm at 0.662 MeV. Therefore, the replacement presents a new alternative coarse aggregate that can enhance the mechanical and radiation shielding properties of ordinary concretes.

Effect of polypropylene and glass fiber on properties of lightweight concrete exposed to high temperature

  • Abdulnour Ali Jazem Ghanim;Mohamed Amin;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa;Yara Elsakhawy
    • Advances in concrete construction
    • /
    • v.15 no.3
    • /
    • pp.179-190
    • /
    • 2023
  • The effect of glass fibres (GF) and polypropylene fibres (PPF) on the fresh properties and mechanical properties of lightweight concrete (LWC) exposed to high temperatures is investigated in this study. In this study, fifteen LWC mixtures were carried out in three different groups reinforced with PPF or GF fibers by 0%, 0.2%, and 0.4% by volume of concrete. The first group included aluminum powder (AP) as an air agent at 0.03% with the normal weight coarse aggregate (NWCA) by 100% of the weight of coarse aggregate. In the second group, 33% of the NWCA weight was replaced by lightweight coarse aggregate (LWCA). In the third group, 67% of the NWCA weight was replaced by LWCA. The slump, unit weight, Compressive strength (CS), tensile strength (TS), and flexural strength (FS) were examined. For two hours, the CS and FS were subjected to elevated temperatures of 200℃, 400℃, and 600℃, in addition to microstructure analysis of concrete. In comparison to the reference mixture, the fresh properties and bulk density of LWC decreased with the use of the air agent or the replacement of 67% of the NWCA with LWCA. As a result of the fiber addition, both the slump test and the bulk density decreased. The addition of fibers increased the CS; the highest CS was 38.5 MPa when 0.4% GF was added, compared to 28.9 MPa for the reference mixture at the test age of 28 days. In addition, flexural and TS increased by 53% and 38%, respectively, for 0.4% GF mixes. As well as, adding 0.4% GF to LWC maintained a higher CS than other mixtures.

Simulation of Particle Behaviors within a Multi-stage Impact Crusher using Discrete Element Method (이산요소법을 이용한 다단 임팩트 파쇄기 내 입자 거동 모사)

  • Yu, Myoungyuol;Lee, Hoon
    • Resources Recycling
    • /
    • v.27 no.3
    • /
    • pp.86-92
    • /
    • 2018
  • The amount of construction waste generated is steadily increasing every year, and the Law for Promotion of Recycling is enacted. However, it is difficult to use it as a recycled aggregate for concrete, which is presented in the quality standard of recycled aggregate with high water uptake and low density due to low separation of aggregate between concrete and cement paste. Therefore, in this study, a multi-stage impact crusher was used to remove mortar, which is essential for improving the quality of recycled aggregate. In analyzing the characteristics of the equipment, the spectrum of energy generated in each part between the particle and the equipment was calculated by using DEM. In order to generate an effective separation phenomenon, it was confirmed that the operation condition of 900 RPM was appropriate based on the ratio of the number of collisions (L/H) of the low energy group (L) to the number of collisions of the high energy group (H).

A Study on the Quality Improvement of Recycled Coarse Aggregate by High Speed Rotating Grinder (고속회전형 마쇄기술을 통한 순환골재 품질향상에 관한 연구)

  • Lee, Ki-Won;Yeo, Woon-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.341-348
    • /
    • 2019
  • In this study, we analyzed the problems of existing construction waste shredding technology to diagnose the problems of low quality recycled aggregates and to develop a new mortar peeling technique to produce high-quality recycled coarse aggregate for concrete. The purpose of this study is to verify the effectiveness of mortar peeling technique by doing simulation prior to on-site application and to check the quality properties of recycled coarse aggregate produced by applying a mortar peeling technique. We manufactured and installed High speed Rotating Grinder on-site and analyzed the correlation between mortar adhesion amount, dry density and water absorption rate of recycled coarse aggregate.

Potential use of local waste scoria as an aggregate and SWOT analysis for constructing structural lightweight concrete

  • Islam, A.B.M. Saiful;Walid, Walid;Al-Kutti, A.;Nasir, Muhammad;Kazmi, Zaheer Abbas;Sodangi, Mahmoud
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.147-164
    • /
    • 2022
  • This study aims to investigate the influence of scoria aggregate (SA) and silica fume (SF) as a replacement of conventional aggregate and ordinary Portland cement (OPC), respectively. Three types of concrete were prepared namely normal weight concrete (NWC) using limestone aggregate (LSA) and OPC (control specimen), lightweight concrete (LWC) using SA and OPC, and LWC using SA and partial SF (SLWC). The representative workability and compressive strength properties of the developed concrete were evaluated, and the results were correlated with non-destructive ultrasonic pulse velocity and Schmidt hammer tests. The LWC and SLWC yielded compressive strength of around 30 MPa and 33 MPa (i.e., 78-86% of control specimens), respectively. The findings indicate that scoria can be beneficially utilized in the development of structural lightweight concrete. Present renewable sources of aggregate will preserve the natural resources for next generation. The newly produced eco-friendly construction material is intended to break price barriers in all markets and draw attraction of incorporating scoria based light weight construction in Saudi Arabia and GCC countries. Findings of the SWOT analysis indicate that high logistics costs for distributing the aggregates across different regions in Saudi Arabia and clients' resistant to change are among the major obstacles to the commercialized production and utilization of lightweight concrete as green construction material. The findings further revealed that huge scoria deposits in Saudi Arabia, and the potential decrease in density self-weight of structural elements are the major drivers and enablers for promoting the adoption of lightweight concrete as alternative green construction material in the construction sector.

Packing density and filling effect of limestone fines

  • Kwan, A.K.H.;McKinley, M.
    • Advances in concrete construction
    • /
    • v.2 no.3
    • /
    • pp.209-227
    • /
    • 2014
  • The use of limestone fines (LF) in mortar and concrete can in certain ways improve performance and thus has become more and more commonplace. However, although LF is generally regarded as a filler, it is up to now not clear how much filling effect it could have and how best the filling effect could be utilized. Herein, the packing density and filling effect of LF were studied by measuring the packing densities of LF, (LF + cement) blends and (LF + cement + fine aggregate) blends under dry and wet conditions, and measuring the performance of mortars made with various amounts of LF added. It was found that the addition of LF would not significantly increase the packing density of (LF + cement) blends but would fill into the paste to increase the paste volume and paste film thickness, and improve the flow spread and strength of mortar.