DOI QR코드

DOI QR Code

Impacts of siltstone rocks on the ordinary concrete's physical, mechanical and gamma-ray shielding properties: An experimental examination

  • R.S. Aita (Nuclear Materials Authority) ;
  • K.A. Mahmoud (Nuclear Materials Authority) ;
  • H.A. Abdel Ghany (Department of Physics, Faculty of Women for Arts, Science and Education, Ain-Shams University) ;
  • E.M. Ibrahim (Nuclear Materials Authority) ;
  • M.G. El-Feky (Nuclear Materials Authority) ;
  • I.E. El Aassy (Nuclear Materials Authority)
  • Received : 2023.12.18
  • Accepted : 2024.01.10
  • Published : 2024.06.25

Abstract

A series of ordinary concrete is casted in order to examine the influence of the manganiferous siltstone rocks on the physical, mechanical, and gamma-ray shielding properties. Thus, a partial replacement for the coarse aggregates by siltstone rocks was performed during the fabrication of the currently ordinary concrete. The test revealed that raising the siltstone concentration improved the mechanical characteristics and density of the developed concretes. The addition of siltstone rocks at concentrations ranging from 0 to 40 wt% of the coarse aggregate concentration raises the density of the concrete from 2.05 g/cm3 to 2.3 g/cm3. Furthermore, partial substitution of basalt with siltstone rocks improves gamma-ray shielding properties. The experimental results for the linear attenuation coefficient show an increase in its value from 0.146 cm1 to 0.160 cm-1 when the siltstone concentration is increased between 0 and 40 wt% at 0.662 MeV. Furthermore, increasing the concentrations of siltstone affected the half-value thickness, which varied between 4.759 and 4.319 cm at 0.662 MeV. Therefore, the replacement presents a new alternative coarse aggregate that can enhance the mechanical and radiation shielding properties of ordinary concretes.

Keywords

References

  1. ICRP, The 2007 recommendations of the international commission on radiological protection, ICRP publication 103, Ann. ICRP 37 (2-4) (2007).
  2. V. Beir, Health Effects of Exposure to Low Levels of Ionizing Radiation, 1990.
  3. D. Rezaei-Ochbelagh, S. Azimkhani, Investigation of gamma-ray shielding properties of concrete containing different percentages of lead, Appl. Radiat. Isot. 70 (2012) 2282-2286, https://doi.org/10.1016/j.apradiso.2012.06.020.
  4. C.-M. Lee, Y.H. Lee, K.J. Lee, Cracking effect on gamma-ray shielding performance in concrete structure, Prog. Nucl. Energy 49 (2007) 303-312, https://doi.org/10.1016/j.pnucene.2007.01.006.
  5. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018) 356-360, https://doi.org/10.1016/j.radphyschem.2017.09.022.
  6. Gamma-ray shielding of concretes including magnetite in different rate, Int. J. Phys. Sci. 8 (2013) 310-314, https://doi.org/10.5897/IJPS2013.3854.
  7. K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Comparative studies between the shielding parameters of concretes with different additive aggregates using MCNP-5 simulation code, Radiat. Phys. Chem. 165 (2019), https://doi.org/10.1016/j.radphyschem.2019.108426.
  8. K.G.H. Sarikayab, I. Akkurt R. Altindag, Photon attenuation coefficients of concrete including marble aggregates, Ann. Nucl. Energy 43 (2012) 56-60, https://doi.org/10.1016/j.anucene.2011.12.031.
  9. S.A. Abo-El-Enein, H.A. El-Sayed, A.H. Ali, Y.T. Mohammed, H.M. Khater, A. S. Ouda, Physico-mechanical properties of high performance concrete using different aggregates in presence of silica fume, HBRC J. 10 (2014) 43-48, https://doi.org/10.1016/j.hbrcj.2013.06.002.
  10. E. Horszczaruk, P. Sikora, P. Zaporowski, Mechanical properties of shielding concrete with magnetite aggregate subjected to high temperature, Procedia Eng. 108 (2015) 39-46, https://doi.org/10.1016/j.proeng.2015.06.117.
  11. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, The shielding of γ-rays by concretes produced with barite, Prog. Nucl. Energy 46 (2005) 1-11, https://doi.org/10.1016/j.pnucene.2004.09.015.
  12. O. Gencel, A. Bozkurt, E. Kam, T. Korkut, Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions, Ann. Nucl. Energy 38 (2011) 2719-2733, https://doi.org/10.1016/j.anucene.2011.08.010.
  13. S.M.R. Aghamiri, S.M.J. Mortazavi, M.A. Mosleh Shirazi, M. Baradaran-Ghahfarokhi, F. Rahmani, A. Amiri, S. Jarideh, Production of a novel high strength heavy concrete using tourmaline and galena for neutron and photon radiation shielding, Int. J. Radiation Res. 12 (2014).
  14. A.M. El-Khayatt, Radiation shielding of concretes containing different lime/silica ratios, Ann. Nucl. Energy 37 (2010) 991-995, https://doi.org/10.1016/j.anucene.2010.03.001.
  15. B. Oto, N. Yildiz, F. Akdemir, E. Kavaz, Investigation of gamma radiation shielding properties of various ores, Prog. Nucl. Energy 85 (2015) 391-403, https://doi.org/10.1016/j.pnucene.2015.07.016.
  16. S. Ristinah, L.D. Wisnumurti, Evaluation of the characteristic of heavyweight concrete using steel slag aggregates for radiation shielding, J. Appl. Environ. Biol. Sci. 1 (2011) 512-521.
  17. D. Sariyer, R. Kucer, N. Kucer, Neutron shielding properties of concretes containing boron carbide and ferro - boron, Procedia Soc Behav Sci 195 (2015) 1752-1756, https://doi.org/10.1016/j.sbspro.2015.06.320.
  18. M.H. Kharita, S. Yousef, M. AlNassar, Review on the addition of boron compounds to radiation shielding concrete, Prog. Nucl. Energy 53 (2011) 207-211, https://doi.org/10.1016/j.pnucene.2010.09.012.
  19. B.S. Seshadri, R. Venkatesan, Transmission characteristics of Cf252 neutrons passing through rare earth and boron loaded concrete slab shields, Nucl. Eng. Des. 117 (1989) 325-331, https://doi.org/10.1016/0029-5493(89)90181-7.
  20. T. Piotrowski, D.B. Tefelski, M. Mazgaj, J. Skubalski, A. Zak, J.J. Sokolowska, Polymers in concrete - the shielding against neutron radiation, Adv. Mater. Res. 1129 (2015) 131-138. https://doi.org/10.4028/www.scientific.net/AMR.1129.131.
  21. K.A. Mahmoud, O.L. Tashlykov, A.F. El Wakil, I.E. El Aassy, Aggregates grain size and press rate dependence of the shielding parameters for some concretes, Prog. Nucl. Energy 118 (2020), https://doi.org/10.1016/j.pnucene.2019.103092.
  22. R.A.R. Bantan, M.I. Sayyed, K.A. Mahmoud, Y. Al-Hadeethi, Application of experimental measurements, Monte Carlo simulation and theoretical calculation to estimate the gamma ray shielding capacity of various natural rocks, Prog. Nucl. Energy 126 (2020), https://doi.org/10.1016/j.pnucene.2020.103405.
  23. R.S. Aita, H.A. Abdel Ghany, E.M. Ibrahim, M.G. El-Feky, I.E. El Aassy, K. A. Mahmoud, Gamma-rays attenuation by mineralized siltstone and dolostone rocks: Monte Carlo simulation, theoretical and experimental evaluations, Radiat. Phys. Chem. 198 (2022), https://doi.org/10.1016/j.radphyschem.2022.110281.
  24. I. Akkurt, S. Kilincarslan, C. Basyigit, The photon attenuation coefficients of barite, marble and limra, Ann. Nucl. Energy 31 (2004) 577-582, https://doi.org/10.1016/j.anucene.2003.07.002.
  25. K.G. Mahmoud, M.S. Alqahtani, O.L. Tashlykov, V.S. Semenishchev, M.Y. Hanfi, The influence of heavy metallic wastes on the physical properties and gamma-ray shielding performance of ordinary concrete: experimental evaluations, Radiat. Phys. Chem. 206 (2023) 110793, https://doi.org/10.1016/j.radphyschem.2023.110793.
  26. S.S. Obaid, M.I. Sayyed, D.K. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018) 86-94, https://doi.org/10.1016/j.radphyschem.2018.02.026.
  27. F. Akman, Z.Y. Khattari, M.R. Kacal, M.I. Sayyed, F. Afaneh, The radiation shielding features for some silicide, boride and oxide types ceramics, Radiat. Phys. Chem. 160 (2019) 9-14, https://doi.org/10.1016/j.radphyschem.2019.03.001.
  28. A. As,kin, M.I. Sayyed, A. Sharma, M. Dal, R. El-Mallawany, M.R. Kacal, Investigation ofthe gamma ray shielding parameters of (100-x) [0.5Li2O-0.1B2O3-0.4P2O5]-xTeO2 glasses using Geant4 and FLUKA codes, J. Non-Cryst. Solids 521 (2019) 119489, https://doi.org/10.1016/j.jnoncrysol.2019.119489.
  29. M.S. Al-Buriahi, M. Rashad, A. Alalawi, M.I. Sayyed, Effect of Bi2O3 on mechanical features and radiation shielding properties of boro-tellurite glass system, Ceram. Int. 46 (2020) 16452-16458, https://doi.org/10.1016/j.ceramint.2020.03.208.
  30. M.I. Sayyed, Radiation shielding characterization of a Yb:CaBTeX glass system as a function of TeO2 concentration, Opt. Quant. Electron. 56 (2024) 333, https://doi.org/10.1007/s11082-023-05951-x.
  31. A. Ratep, A. Abdelaziem, M.Y. Hanfi, K.A. Mahmoud, I. Kashif, Enhancing gamma-ray shielding with bismuth oxide-infused boron oxides, Opt. Quant. Electron. 56 (2024) 143, https://doi.org/10.1007/s11082-023-05788-4.
  32. K.M. Kaky, M.I. Sayyed, Selected germanate glass systems with robust physical features for radiation protection material use, Radiat. Phys. Chem. 215 (2024) 111321, https://doi.org/10.1016/j.radphyschem.2023.111321.
  33. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D. S. Zucker, XCOM: Photon Cross Sections Database, 2010, https://doi.org/10.18434/T48G6X.
  34. H.A. Al-Yousef, M. Alotiby, M.Y. Hanfi, B.M. Alotaibi, K.A. Mahmoud, M.I. Sayyed, Y. Al-Hadeethi, Effect of the Fe2O3 addition on the elastic and gamma-ray shielding features of bismuth sodium-borate glass system, J. Mater. Sci. Mater. Electron. 32 (2021), https://doi.org/10.1007/s10854-021-05400-z.
  35. A. Kumar, A.M. Ali, M.I. Sayyed, A. As,kin, M. Rashad, H. Algarni, Structural, optical, and gamma-ray-sensing characterization of (35 - x) PbO-10 MgO-10Na2O-5 Fe2O3-10 BaO-(30 - B2O3 glasses, Appl. Phys. A 125 (2019) 512, https://doi.org/10.1007/s00339-019-2810-7.
  36. A.S. Abouhaswa, M.I. Sayyed, A.S. Altowyan, Y. Al-Hadeethi, K.A. Mahmoud, Synthesis, structural, optical and radiation shielding features of tungsten trioxides doped borate glasses using Monte Carlo simulation and phy-X program, J. Non-Cryst. Solids 543 (2020), https://doi.org/10.1016/j.jnoncrysol.2020.120134.
  37. B. Albarzan, A.H. Almuqrin, M.S. Koubisy, E.A.A. Wahab, K.A. Mahmoud, KhS. Shaaban, M.I. Sayyed, Effect of Fe2O3 doping on structural, FTIR and radiation shielding characteristics of aluminium-lead-borate glasses, Prog. Nucl. Energy 141 (2021) 103931, https://doi.org/10.1016/j.pnucene.2021.103931.
  38. N.K. Libeesh, K.A. Naseer, K.A. Mahmoud, M.I. Sayyed, S. Arivazhagan, M. S. Alqahtani, E.S. Yousef, M.U. Khandaker, Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications, Radiat. Phys. Chem. 193 (2022), https://doi.org/10.1016/j.radphyschem.2022.110004.
  39. S. Kumar, K.S. Mann, T. Singh, S. Singh, Investigations on the gamma-ray shielding performance of green concrete using theoretical, experimental and simulation techniques, Prog. Nucl. Energy 134 (2021) 103654, https://doi.org/10.1016/j.pnucene.2021.103654.
  40. A.S. Ouda, H.S. Abdelgader, Assessing the physical, mechanical properties, and γ-ray attenuation of heavy density concrete for radiation shielding purposes, Geosyst. Eng. 22 (2019) 72-80, https://doi.org/10.1080/12269328.2018.1469434.
  41. V. Fugaru, S. Bercea, C. Postolache, S. Manea, A. Moanta, I. Petre, M. Gheorghe, Gamma ray shielding properties of some concrete materials, Acta Phys. Pol., A 127 (2015) 1427-1429, https://doi.org/10.12693/APhysPolA.127.1427.