DOI QR코드

DOI QR Code

Simulation of Particle Behaviors within a Multi-stage Impact Crusher using Discrete Element Method

이산요소법을 이용한 다단 임팩트 파쇄기 내 입자 거동 모사

  • Received : 2018.04.27
  • Accepted : 2018.06.08
  • Published : 2018.06.30

Abstract

The amount of construction waste generated is steadily increasing every year, and the Law for Promotion of Recycling is enacted. However, it is difficult to use it as a recycled aggregate for concrete, which is presented in the quality standard of recycled aggregate with high water uptake and low density due to low separation of aggregate between concrete and cement paste. Therefore, in this study, a multi-stage impact crusher was used to remove mortar, which is essential for improving the quality of recycled aggregate. In analyzing the characteristics of the equipment, the spectrum of energy generated in each part between the particle and the equipment was calculated by using DEM. In order to generate an effective separation phenomenon, it was confirmed that the operation condition of 900 RPM was appropriate based on the ratio of the number of collisions (L/H) of the low energy group (L) to the number of collisions of the high energy group (H).

건설폐기물 발생량은 매년 꾸준하게 상승하고 있으며 재활용촉진 법이 재정되어있지만 콘크리트-시멘트페이스트 간의 단체분리 저하로 인해 높은 흡수율과 낮은 밀도로 순환골재 품질 기준에 제시되어 있는 콘크리트용 순환골재로서 사용되기 어려운 실정이다. 따라서 본 연구에서는 순환골재의 품위 향상에 필수적인 몰타르 제거를 위하여 다단형 임팩트 크러셔를 사용하였다. 장비의 특성을 분석하는데 있어서 전산 모사 방법인 DEM (Discrete Element Method)를 이용하여 영상 분석을 이용한 내부 입자의 거동 특징과, 투입 입자-장비의 각 부분에 발생하는 에너지의 스펙트럼을 분석하였다. 내부벽, 가이더 및 임펠러의 힘의 크기를 발생하는 횟수에 따라 스펙트럼을 생성하여 효과적인 분석이 가능하였다. 효과적인 박리현상을 발생시키기 위하여, 저에너지 그룹의 충돌 횟수(L)와 파분쇄를 발생시키는 고에너지 그룹의 충돌 횟수(H)의 비율을 토대로 회전속도 900RPM의 조건이 적절함을 확인하였다.

Keywords

References

  1. Ministry of Environment, 2016, Status of waste generation and disposal, pp.15-17.
  2. Kim, K. H., Mun, M. W., Cho, H. C., and Ahn, J. H., 2010 : A Study on the Liberation Characteristics of Waste Concrete for Production of High Quality Recycled Aggregate, Journal of the Korean Institute of Resources Recycling, 19(3), pp.52-61.
  3. Kim, J. P., Lee, S. T., Jung, H. S., Park, K. P., and Kim, S. S., 2007 : Durability of Mortar Matrix Replaced with Recycled Fine Aggregates, Journal of the Korean Institute of Resources Recycling, 16(6), pp.20-27.
  4. Bae, J. S. and Kim, N. W., 2011 : Properties of Concrete using Surface Treatment Recycled Aggregates and Steel Fibers, Journal of the Korean Institute of Resources Recycling, 20(1), pp.46-53. https://doi.org/10.7844/KIRR.2011.20.1.046
  5. Mishra, B. and Rajamani, R. K., 1992 : The discrete element method for the simulation of ball mills, Applied Mathematical Modelling, 16(11), pp.598-604. https://doi.org/10.1016/0307-904X(92)90035-2
  6. Lee, H., Kwon, J. H., Kim, K. H., and Cho, H. C., 2008 : Application of DEM model to breakage and liberation behaviour of recycled aggregates from impact-breakage of concrete waste, Minerals Engineering 21(11), pp.761-765. https://doi.org/10.1016/j.mineng.2008.06.007
  7. Jiang, S., Li, T., and Tan, Y., 2015 : A DEM Methodology for Simulating the Grinding Process of SiC Ceramics, Procedia Engineering, 102, pp.1803-1810. https://doi.org/10.1016/j.proeng.2015.01.317
  8. Tan, Y., Yang, D., and Sheng, Y., 2009 : Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC, Journal of the European ceramic society, 29(6), pp.1029-1037. https://doi.org/10.1016/j.jeurceramsoc.2008.07.060
  9. Lee, H. S., Lee, H., Kim, K. H., and You, K. S., 2017 : Analysis of Grinding Energy Spectrum and Grinding Media Motion by Ball Mill Lifter Design, J. KSMER, 54(6), pp.628-636.
  10. Wang, M. H., Yang, R. Y., and Yu, A. B., 2012 : DEM investigation of energy distribution and particle breakage in tumbling ball mills, powder technology, 223, pp.83-91. https://doi.org/10.1016/j.powtec.2011.07.024
  11. Bian, X., Wang, G., Wnag, H., Wnag, S., and Lv, W., 2017 : Effect of lifters and mill speed on particle behaviour, torque, and power consumption of a tumbling ball mill: Experimental study and DEM simulation, Minerals Engineering, 105, pp.22-35. https://doi.org/10.1016/j.mineng.2016.12.014
  12. Cho, H. C. and Jeong, S., 2005 : A Characteristic Study of Ball Mill and Centrifugal Mill using Discrete Element Method, J. KSMER, 42(4), pp.393-402.
  13. Cleary, P. W. and Hoyer, D., 2000 : Centrifugal mill charge motion and power draw: comparison of DEM predictions with experiment, International journal of mineral processing, 59(2), pp.131-148. https://doi.org/10.1016/S0301-7516(99)00063-0
  14. Sinnott, M., Cleary, P. W., and Morrison, R., 2006 : Analysis of stirred mill performance using DEM simulation: Part 1-media motion, energy consumption and collisional environment, Minerals Engineering, 19(15), pp.1537-1550. https://doi.org/10.1016/j.mineng.2006.08.012
  15. Lee, H., Cho, H. C., and Kwon, J. H., 2010 : Using the discrete element method to analyze the breakage rate in a centrifugal/vibration mill, Powder Technology, 198(3), pp.364-372. https://doi.org/10.1016/j.powtec.2009.12.001