DOI QR코드

DOI QR Code

Hydrochloric Acid Leaching Behavior of Mechanically Activated Black Dross

기계적 활성화처리한 블랙드로스의 염산 침출

  • Nguyen, Thi Hong (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Nguyen, Thi Thuy Nhi (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University)
  • ;
  • ;
  • 이만승 (목포대학교 신소재공학과)
  • Received : 2018.04.17
  • Accepted : 2018.05.16
  • Published : 2018.06.30

Abstract

Effect of ball milling treatment on the hydrochloric acid leaching performance of black dross was investigated to recover alumina. Ball milling time and speed showed limited effect on the leaching behavior of the alumina in the mechanically dross. Under the optimum mechanical activation condition (for 1h at 700 rpm), the leaching of alumina in hydrochloric acid solution was significantly affected by leaching time and reaction temperature. MgO was completely dissolved in most of the leaching conditions, while a small amount of Ca, Fe, Si and Ti oxides was dissolved. Although 80% of alumina was dissolved, the dissolved minor components such as Ca, Fe, Mg, Si and Ti oxides should be separated to recover pure alumina solution.

블랙드로스에 함유된 알루미나를 회수하기 위해 볼밀처리가 염산침출에 미치는 영향을 조사하였다. 볼밀처리 시간과 회전속도는 알루미나 침출에 큰 영향을 미치지 않았다. 최적의 볼밀처리(1시간, 700 rpm)에서 알루미나 침출은 침출시간과 온도에 영향을 받았다. 본 논문의 실험조건에서 산화마그네슘은 모두 용해되었으며, 칼륨, 철, 실리콘과 타이타늄 산화물은 일부만 용해되었다. 알루미나는 80% 정도 침출되었지만 상기 산화물이 미량 용해되므로 순수한 알루미나용액을 회수하기 위해서는 분리공정의 도입이 필요하다.

Keywords

References

  1. Sarker, M. S. R., Alam, M. Z., Qadir, M. R., Gafur, M. A., and Moniruzzaman, M., 2015 : Extraction and characterization of alumina nanopowders from aluminum dross by acid dissolution process, Int. J. Miner. Metall. Mater., 22, pp.429-436. https://doi.org/10.1007/s12613-015-1090-2
  2. Tsakiridis, P. E., P. Oustadakis, and Agatzini-Leonardou, S., 2013 : Aluminium recovery during black dross hydrothermal treatment, J. Environ. Chem. Eng., 1, pp.23-32. https://doi.org/10.1016/j.jece.2013.03.004
  3. David, E. and Kopac, J., 2016 : Hydrolysis of aluminum dross material to achieve zero hazardous waste, J. Hazard. Mater., 209-210, pp.501-509.
  4. Meshram, A. and Singh, K. K., 2018 : Recovery of valuable products from hazardous aluminum dross: A review, Resour. Conserv. Recycl., 130, pp.95-108. https://doi.org/10.1016/j.resconrec.2017.11.026
  5. Bruckard, W. J. and Woodcock, J. T., 2007 : Characterisation and treatment of Australian salt cakes by aqueous leaching, Miner. Eng., 20, pp.1376-1390. https://doi.org/10.1016/j.mineng.2007.08.020
  6. Dash, B., Das, B. R., Tripathy, B. C., Bhattacharya, I. N., and Das, S. C., 2008 : Acid dissolution of alumina from waste aluminium dross, Hydrometallurgy, 92, pp.48-53. https://doi.org/10.1016/j.hydromet.2008.01.006
  7. Nguyen, T. T. N., Lee, M. S., and Nguyen, T. H., 2018 : Ball milling treatment of black dross for selective dissolution of alumina in sodium hydroxide leaching, Processes 2018, 6 (4), pp.1-11. https://doi.org/10.3390/pr6010001
  8. Valeev, D., Pak, V., Mikhailova, A., Govdberg, M., Zheleznyi, M., Dorofievich, I., Lainer, Y., Bychinskii, V., and Chudnenko, K., 2016 : Extraction of aluminium by autoclave hydrochloric acid leaching of boehmite-kaolinite bauxite, TMS Light Met., pp.23-28.
  9. Boukerche, I., Djerad, S., Benmansour, L., Tifouti, L., and Saleh, K., 2014 : Degradability of aluminum in acidic and alkaline solutionsm, Corros. Sci., 78, pp.343-352. https://doi.org/10.1016/j.corsci.2013.10.019
  10. Nguyen, T. T. N., Nguyen, T. H., and Lee, M. A., 2017 : Leaching of Black dross by hydrochloric acid solutions, J. of Korean Inst. of Resources Recycling, 26(6), pp.58-64. https://doi.org/10.7844/KIRR.2017.26.6.58
  11. Xing, W. D., Ahn, B. D., and Lee, M. S., 2017 : Treatment of black dross with water and NaOH solution, J. Kirr., 26, pp.53-60.
  12. Han, Q., Setchi, R., and Evans, S. L., 2017 : Characterisation and milling time optimisation of nanocrystalline aluminium powder for selective laser melting. Int. J. Adv. Manuf. Technol., 88, pp.1429-1438. https://doi.org/10.1007/s00170-016-8866-z
  13. Tokoro, C., Suzuki, S., Haraguchi, D., and Izawa, S., 2014 : Silicate removal in aluminum hydroxide co-precipitation process. Materials (Basel). 7, pp.1084-1096. https://doi.org/10.3390/ma7021084
  14. Willey, J. D., 1975 : Reactions which remove dissolved alumina from seawater. Mar. Chem., 3, pp.227-240. https://doi.org/10.1016/0304-4203(75)90004-3
  15. Hem, J. D., Roberson, C. E., Lind, C. J., and Polxer, W. L., 1973 : Chemical interactions of aluminum with aqueous silica at 25 degrees Celsius, Geol. Surv. Water-Supply Pap. pp.1827-E.
  16. Yokoyama, T., Ueda, A., Kato, K., Mogi, K., and Matsuo, S., 2002 : A study of the alumina-silica gel adsorbent for the removal of silicic acid from geothermal water: Increase in adsorption capacity of the adsorbent due to formation of amorphous aluminosilicate by adsorption of silicic acid, J. Colloid Interface Sci., 252, pp.1-5. https://doi.org/10.1006/jcis.2002.8382
  17. Maraghechi, H., Rajabipour, F., Pantano, C. G., and Burgos, W. D., 2016 : Effect of calcium on dissolution and precipitation reactions of amorphous silica at high alkalinity, Cem. Concr. Res., 87, pp.1-13. https://doi.org/10.1016/j.cemconres.2016.05.004
  18. Hill, J., Harris, A. W., Manning, M., Chambers, A., and Swanton, S. W., 2006 : The effect of sodium chloride on the dissolution of calcium silicate hydrate gels, Waste Manag., 26, pp.758-768. https://doi.org/10.1016/j.wasman.2006.01.022
  19. Teir, S., Revitzer, H., Eloneva, S., Fogelholm, C. J., and Zevenhoven, R., 2007 : Dissolution of natural serpentinite in mineral and organic acids, Int. J. Miner. Process., 83, pp.36-46. https://doi.org/10.1016/j.minpro.2007.04.001
  20. Rodriguez, A., Costarricense, I., Area, D. E., Geotermicos, C. S. R., and Rica, C., 2006 : Amorphous Iron Silicate Scales in Surface Pipelines: Characterization and Geochemical Constraints on Formation Conditions in the Miravalles Geothermal Field, Costa Rica.
  21. Xiong, X., Wang, Z., Wu, F., Li, X., and Guo, H., 2013 : Preparation of $TiO_2$ from ilmenite using sulfuric acid decomposition of the titania residue combined with separation of $Fe^{3+}$ with EDTA during hydrolysis, Adv. Powder Technol., 24, pp.60-67. https://doi.org/10.1016/j.apt.2012.02.002
  22. Arabia, S., 2009 : Extraction of Alumina from Local Clays by Hydrochloric Acid Process, JKAU Eng. Sci. 20, pp.29-41.
  23. Gorrepati, E. A., Wongthahan, P., Raha, S., and Fogler, H. S., 2010 : Silica precipitation in acidic solutions: Mechanism, pH effect, and salt effect, Langmuir, 26, pp.10467-10474. https://doi.org/10.1021/la904685x
  24. Xiao, J., Li, F., Zhong, Q., Bao, H., Huang, B. J., and Zhang, Y., 2015 : Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC, Hydrometallurgy, 155, pp.118-124. https://doi.org/10.1016/j.hydromet.2015.04.018
  25. Sheikholeslami, R., Al-Mutaz, I. S., Tan, S., and Tan, S. D., 2015 : Silica Fouling - effect of Ca, Mg, and Pretreatment by Sodium Aluminate, and Softeners, 6th World Congr. Chem. Eng., pp.23-27.

Cited by

  1. A Review on Germanium Resources and its Extraction by Hydrometallurgical Method vol.42, pp.6, 2018, https://doi.org/10.1080/08827508.2020.1756795