DOI QR코드

DOI QR Code

Development of The Criticality Evaluation System for Rare Metals Stockpiling

희유금속 비축 적정성 평가체계 수립

  • Kim, Yu-Jeong (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Dae-Hyung (Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Jinsoo (Department of Earth Resources and Environmental Engineering, Hanyang University) ;
  • Kim, Juhan (Department of Earth Resources and Environmental Engineering, Hanyang University)
  • Received : 2018.04.16
  • Accepted : 2018.05.24
  • Published : 2018.06.30

Abstract

The import amount of rare metal in Korea is about 6,034 million USD, but the self-sufficiency of rare metals is about only 1%. In order to secure the stable supply of rare metals, it is necessary to operate an efficient stockpile system. In this study, we established a system to assess the adequacy of stockpiles by quantifying the risk factors of tangible and intangible risks in order to establish an efficient stockpile strategy. The model developed in this study aims to select the rare metals that need to be stockpiled first and to suggest the direction of the stockpiling policy in accordance with technological change and market change from the mid and long term viewpoint. The evaluation results derived from the model can quantitatively measure the security level of each rare metal and enable relative comparison between the rare metals using criticality matrix. Therefore, it is expected that more efficient stockpile policy will be possible if the proposed model is utilized in the future policy making.

우리나라의 희유금속 수입액은 6,034 백만불에 달하나 국내 희유금속 자급률은 1% 수준에 불과하여 효율적인 비축제도의 운영이 필요하다. 이에 본 연구에서는 효율적인 비축전략 수립을 위해 비축 대상이 되는 희유금속의 유 무형 위험 요인을 정량화하여 비축 적정성을 평가할 수 있는 체계를 수립하였다. 본 연구에서 개발한 모형은 중장기적인 관점에서 기술변화와 시장변화에 맞추어 우선 비축이 요구되는 희유금속을 선별하고 비축정책의 방향성을 제시하는데 그 목적이 있다. 모형을 통해 도출된 평가결과는 위험상태 행렬(criticality matrix)로 표현되어 희유금속의 안보수준을 정량적으로 측정할 수 있으며 상대비교를 가능케 한다. 따라서 향후 정책수립에 있어 본 논문에서 제안한 모형이 활용된다면 보다 효율적인 비축정책 수립이 가능할 것으로 기대된다.

Keywords

References

  1. Kim, Y. J. and Kim, D. H., 2012 : Development of target management indicators for national resource security, Journal of the Korean Society for Geosystem Engineering, 49(1), pp.59-67.
  2. KIGAM, 2015 : Mineral commodity supply and demand, Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea.
  3. Stockpilie of Korea Resources Corporation, https://www.kores.or.kr/views/cms/hkor/bi/bi04/bi0402.jsp, (connected date : 2017.11.24.).
  4. NRC, 2008 : Minerals, Critical Minerals, and the U.S. Economy, US National Research Council, Washington DC., USA.
  5. Gloser, S., et al., 2015 : Raw material criticality in the context of classical risk assessment, Resources Policy, 44, pp.35-46. https://doi.org/10.1016/j.resourpol.2014.12.003
  6. Kim, J. H., et al., 2016 : Development of the Evaluation System for Mineral Resources Security, J of the Korean Society of Mineral and Energy Resources Engineers, 53(3), pp.246-262.
  7. Hafner, M., 2008 : A Quantification of the Diversification of European Coal Supplies, SECURE-Security of Energy Considering its Uncertainty, Risk and Economic Implications, Brussels, Belgium.
  8. Graedel, T. E., et al. 2011 : Recycling Rates of Metals-A Status Report, A Report of the Working Group on the Global Metal Flows to the International Resource Panel, United Nations Environment Programme. Nairobi, Kenya.
  9. EC, 2017 : Study on The Review of The List of Critical Raw Materials, European Commission, Brussels, Belgium.