• Title/Summary/Keyword: age of the Earth

Search Result 426, Processing Time 0.024 seconds

Vegetation Height and Age Estimation using Shuttle Radar Topography Mission and National Elevation Datasets (SRTM과 NED를 활8한 산림수고추정 및 수령 추정)

  • Kim Jin-Woo;Heo Joon;Sohn Hong-Gyoo
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.305-309
    • /
    • 2006
  • SAR (Synthetic Aperture Radar) technology, which is not influenced by cloud cover because of using electromagnetic wave of long wavelength, has an advantage in mapping the earth. NASA, recognizing these strong points of SAR, launched SRTM (Shuttle Radar Topography klission), and acquired the topographic information of the earth. SRTM and NED (National Elevation Data) of USGS were used for the research and vegetation height map was produced through differentiating the two data. Correlation between SRTM-NED and planting year was analyzed to see the relationship. Strong correlation was detected and it shows the feasibility of estimating timber age and eventually creating timber age map from SRTM-NED. Additional analyses were conducted to check if the linearity is influenced by regional characteristics and forest uniformity. As results, the correlation between SRTM-NED and timber age is influenced by roughness of the terrain. Overall, this paper shows that timber age estimation using SRTM and NED can be sufficiently practical.

  • PDF

The Late Cretaceous Emplacement Age of Masan Hornblende-Biotite Granite (마산 각섬석-흑운모 화강암의 연령: 후기 백악기 정치연령)

  • Lee, Tae-Ho;Park, Kye-Hun;Kim, Jeongmin;Kim, Myoung Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • We have dated the K-Ar, Ar-Ar and U-Pb ages of the Masan hornblende-biotite granite in the southern Cretaceous Gyeongsang basin to constrain its emplacement age. The ~108 Ma hornblende K-Ar age obtained in the study is similar to the previously reported Rb-Sr age. However, the single grain total fusion $^{40}Ar/^{39}Ar$ dating on hornblende failed to yield statistically meaningful ages because the isotopic system was open during its alteration. Thus the hornblende K-Ar age in the study is also unlikely to be reliable. The single grain total fusion $^{40}Ar/^{39}Ar$ dating on biotite yielded an average age of $75.8{\pm}3.0Ma$. Apart from scattered data in the range of ~45-75 Ma, the average age increased to ~80 Ma. The SHRIMP and LA-MC-ICPMS U-Pb isotopic compositions of zircon from the Masan hornblende-biotite granite yielded its emplacement age as $87.6{\pm}2.7Ma$ and $86.8{\pm}0.4Ma$, respectively. It is thus likely that the ~80 Ma $^{40}Ar/^{39}Ar$ age of biotite might reflect the cooling age of Masan hornblende-biotite granite or the thermal influences from later intense igneous activities in the Gyeongsang basin.

Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period (추가령단층대 주요 단층의 백악기 이후 재활동 연대)

  • Chung, Donghoon;Song, Yungoo;Park, Changyun;Kang, Il-Mo;Choi, Sung-Ja;Khulganakhuu, Chuluunbaatar
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • Recently developed illite-age-analysis (IAA) approach has been applied to determine the multiple events for the Singal and Wangsukcheon faults in the Chugaryeong fault belt, Korea. Fault reactivated events during Late Cretaceous to Paleogene events($69.2{\pm}0.3$ Ma and $27.2{\pm}0.5$ Ma) for the Singal fault and of $75.4{\pm}0.8$ Ma for the Wangsukcheon fault were determined by combined approach of the optimized illite-polytype quantification and the K-Ar age-dating of clay fractions separated from the fault clays. These absolute geochronological determinations of the multiple tectonic events recorded in the Chugaryeong fault belt are crucial to establish the tectonic evolution of the Korean Peninsula since Late Cretaceous.

Development of a History of Science Lesson Using the Content of 'Age Dating of the Earth' (지구의 연령 측정 관련 과학사 수업 개발)

  • Shin, Dong-Hee;Kang, Hye-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.3
    • /
    • pp.324-333
    • /
    • 2011
  • The opinion, that the history of science should be introduced to science lesson, has been continuously emphasized by a group of people who supported the needs of science and scientific process, nature of science, and the interaction between science and society. When the importance of the integrated science education is emphasized, the history of science is suggested as an effective curriculum for it. To respond to this identified interest, we developed a lesson of the history of science by selecting the contents of the history of science as subject topics of the integrated science and by utilizing the findings of previous studies related to the history of science in science educations. To develop the history of science class as a subject of integrated science, we chose 'the age of the earth' as a unit. After the pilot test of the unit in secondary school students, the possibility of offering the lesson as a regular course was examined with analysis of the students' reactions showing its effectiveness.

Jurassic (~170Ma) Zircon U-Pb Age of a "Granite Boulder" in the Geumgang Limestone, Ogcheon Metamorphic Belt, Korea: Reinterpretation of its Origin (옥천변성대 금강석회암 내 "화강암 거력"의 쥬라기(~170 Ma) 저어콘 연대: 성인에 대한 재해석)

  • Cheong, Wonseok;Cho, Moonsup;Yi, Keewook;Lee, Min Sung;Kim, Yoonsup
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • A "granite boulder", ~70 cm in size, was reported from the Geumgang Limestone, and has been considered as a glaciogenic dropstone. Since this interpretation has enormous implications for unraveling the evolution history of the Ogcheon Metamorphic Belt, we re-examined the contact relationship and structure of the "granite boulder", and estimated its emplacement age based upon SHRIMP U-Pb zircon dating. The weighted mean $^{206}Pb/^{238}U$ age pooled from 6 spot analyses of two specimens is $170{\pm}2Ma$ ($2{\sigma}$, MSWD=2.2). This zircon age suggests that the "granite boulder" in the Geumgang Limestone is a part of Jurassic granite, rather than a glaciogenic dropstone.

UBVI CCD PHOTOMETRY OF THE OPEN CLUSTER NGC 2420 (산개성단 NGC 2420에 대한 UBVI CCD 측광)

  • LEE SANG HYUN;KANG YONG-WOO;ANN HONG BAE
    • Publications of The Korean Astronomical Society
    • /
    • v.14 no.2
    • /
    • pp.61-67
    • /
    • 1999
  • We present a new UBVI CCD photometry of the intermediate-age open cluster NGC 2420. Our photometry covers a field of $7'9\times7.'7$ of the sky centered on the cluster. We determined the reddening and distance to the cluster by the main sequence fitting as $E(B - V) = 0.05\pm0.02$ and $(m-M)_o = 11.9\pm0.1$, along with the age of $\~2$ Gyr by fitting the Padova isochrones to the observed color-magnitude diagrams of the cluster. The fraction of binaries is found to be $44\pm5\%$ and they are likely to locate in the central region of the cluster. The spatial distributions of the binaries and the variation of the cluster luminosity functions along the radius suggest mass segregations due to the dynamical evolution of the cluster.

  • PDF

Principle and Application of 'Image-mapping' in-situ U-Pb Carbonate Age-dating ('Image-mapping' in-situ U-Pb 탄산염광물 연대측정법의 원리 및 적용)

  • Ha Kim;Seongsik Hong;Chaewon Park;Jihye Oh;Jonguk Kim;Yungoo Song
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.115-123
    • /
    • 2023
  • We introduce a new 'image-mapping' in-situ U-Pb dating method using LA-ICP-MS, proposed by Drost et al. (2018), and show the characteristics and usability of this method through several examples of absolute age results determined by first applying it to samples from the Joseon Supergroup of the Early Paleozoic Era in Korea. Unlike the previous in-situ spot analysis, this in-situ U-Pb dating method for carbonate minerals can determine the absolute age with high reliability by applying the 'image-mapping' method of micro-sized domains based on micro-textural observation, as well as determine the absolute age of multiple geological 'events' that occurred after deposition. This was confirmed in the case of determining the syn-depositional age and the multiple post-depositional ages from carbonate minerals of the Makgol and the Daegi Formations. Therefore, if the 'image-mapping' in-situ U-Pb dating method is applied to determine the absolute age of various types of carbonate minerals that exist in various geological environments throughout the geologic era, it will be possible to secure new geological age information.