DOI QR코드

DOI QR Code

Reactivated Timings of Some Major Faults in the Chugaryeong Fault Zone since the Cretaceous Period

추가령단층대 주요 단층의 백악기 이후 재활동 연대

  • 정동훈 (연세대학교 지구시스템과학과) ;
  • 송윤구 (연세대학교 지구시스템과학과) ;
  • 박창윤 (연세대학교 지구시스템과학과) ;
  • 강일모 (한국지질자원연구원) ;
  • 최성자 (한국지질자원연구원) ;
  • Received : 2014.02.10
  • Accepted : 2014.02.25
  • Published : 2014.02.28

Abstract

Recently developed illite-age-analysis (IAA) approach has been applied to determine the multiple events for the Singal and Wangsukcheon faults in the Chugaryeong fault belt, Korea. Fault reactivated events during Late Cretaceous to Paleogene events($69.2{\pm}0.3$ Ma and $27.2{\pm}0.5$ Ma) for the Singal fault and of $75.4{\pm}0.8$ Ma for the Wangsukcheon fault were determined by combined approach of the optimized illite-polytype quantification and the K-Ar age-dating of clay fractions separated from the fault clays. These absolute geochronological determinations of the multiple tectonic events recorded in the Chugaryeong fault belt are crucial to establish the tectonic evolution of the Korean Peninsula since Late Cretaceous.

본 연구에서는 한반도 중부지역 추가령단층대 내 신갈단층과 왕숙천단층 단층점토에 대한 입도별 일라이트 폴리타입 정량분석과 K-Ar 연대측정 결과의 IAA법 적용 및 해석을 통해 백악기 이 후 추가령단층대 단층활동 절대연대를 결정하고, 그 지구조적 의미를 논의하였다. 신갈단층에서는 2회($69.2{\pm}0.3$ Ma 및 $27.2{\pm}0.5$ Ma)의 단층 재활동연대가, 그리고 왕숙천단층에서는 $75.4{\pm}0.8$ Ma의 단층 재활동연대가 결정되었다. 한반도의 주요 지구조선인 추가령단층대에 대한 직접적인 단층 재활동연대를 상세히 결정함으로써, 후기 백악기부터 제3기에 걸쳐 일어난 한반도 지구조진화연구의 구체적인 연대정보를 제공할 수 있을 것이다.

Keywords

References

  1. Alt, J.C. and Jiang, W.-T. (1991) Hydrothermally precipitated mixed-layer illite-smectite in recent massive sulfide deposits from the sea floor. Geology, v.19, p.570-573. https://doi.org/10.1130/0091-7613(1991)019<0570:HPMLIS>2.3.CO;2
  2. Cheong C.-S. and Kim, N. (2012) Review of radiometric ages for Phanerozoic granitoids in South Korean Peninsula. Journal of the Petrological Society of Korea, v.21, p.173-191. https://doi.org/10.7854/JPSK.2012.21.2.173
  3. Chung, D., Song, Y., Kang, I.-M. and Park, C.-Y. (2013) Optimization of Illite Polytype Quantification Method. Economic and Environmental Geology, v.46, p.1-9 (in Korean with English abstract). https://doi.org/10.9719/EEG.2013.46.1.1
  4. Choi, S.J., Chwae, U., Lee, H.-K., Song, Y., and Kang, I.- M. (2012. Review on Chugaryeong Fault. Economic and Environmental Geology, v.45, p.441-446 (in Korean with English abstract). https://doi.org/10.9719/EEG.2012.45.4.441
  5. Chwae, U., Choi, S.-J., Cho, D.R., Lee Y.J., Ryu, C.R., Ko, I.S., Shin, H.M. and Song, M.J. (2000) Neotectonics. Korea Institute of Geology, Mining and Materials (KIGAM), 429p.
  6. Cluzel, D.J., Lee, B.-J. and Cade, J.-P. (1991) Indonesian dextral ductile fault system and synkinematic plutonism in the southwest of the Ogcheon belt(south Korea). Tectonophysics, v.194, p.131-151. https://doi.org/10.1016/0040-1951(91)90277-Y
  7. Duvall, A.R., Clark, M.K., van der Pluijm, B.A. and Li, C. (2011) Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth and Planetary Science Letters, v.304, p.520-526. https://doi.org/10.1016/j.epsl.2011.02.028
  8. Grathoff, G.H. and Moore, D.M. (1996) Illite polytype quantification using Wildfire calculated X-ray diffraction patterns. Clays and Clay Minerals, v.44, p.835-842. https://doi.org/10.1346/CCMN.1996.0440615
  9. Grathoff, G.H., Moore, D.M., Hay, R.L. and Wemmer, K. (2001) Origin of illite in the lower Paleozoic of the Illinois basin; evidence for brine migration. Geological Society of America Bulletin, v.113, p.1092-1104. https://doi.org/10.1130/0016-7606(2001)113<1092:OOIITL>2.0.CO;2
  10. Haines, S.H. and van der Pluijm, B.A. (2008) Clay quantification and Ar-Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatan detachment fault, Sonora, Mexico. J. Structural Geology, v.30, 525-538. https://doi.org/10.1016/j.jsg.2007.11.012
  11. Hwang, S.K., An, Y.M. and Yi, K. (2011) SHRIMP age datings and volcanism times of the igneous rocks in the Cheolwonbasin, Korea. Journal of the Petrological Society of Korea. v.20, p.231-241(in Korean with English abstract). https://doi.org/10.7854/JPSK.2011.20.4.231
  12. Inoue, A., Utada. M. and Wakita, K. (1992) Smectite-toillite conversion in natural hydrothermal systems. Applied Clay Science, v.7, p.131-145. https://doi.org/10.1016/0169-1317(92)90035-L
  13. Itaya, T., Nagao, K., Inoue, K., Honjou, Y., Okada, T. and Ogata, A. (1991) Argon isotopic analysis by newly developed mass spectrometric system for K-Ar dating. Mineralogical Journal, v.15, p.203-221. https://doi.org/10.2465/minerj.15.203
  14. Kee, W.-S., Lim, S.-B., Kim, H., Kim, B.C., Hwang, S.K., Song, K.-Y. and Kim, Y.-H. (2008) Geological report of the Yeoncheon sheet (scale 1:50,000). Korea Institute of Geoscience and Mineral Resources (KIGAM), 83p.
  15. Kang, P.C., Chi, K.H., Cho, M.J. and Choi, Y.S. (2011) A geological study on the Seoul-Dongducheun lineament using digital image processing teachiques of Landsat data, Journal of Korean Society of Remote Sensing, v.1, p.39-51.
  16. KIGAM (2002) Tectonic Map of Korea (1:1,000,000), KIGAM.
  17. Kim, O.J. (1973) The stratigraphy and geologic structure of the metamorphic complex in the Northwestern Area of the Kyonggi Massif. Jour. Korean Inst. Mining Geol., v.6, p.201-215.
  18. Kim, H.K., Kim, O.J., Min, K.D. and Lee, Y.S. (1984) Structural, Plaeomagnetic and Petrological Studies of the Chugaryeong Rift Valley. Jour. Korean Inst. Mining Geol., v.17, p.215-230.
  19. Kuwahara, Y., Uehara, S. and Aoki, Y. (1998) Surface microtopography of lath-shaped hydrothermal illite by tapping-modeTM? and contact-mode AFM. Clays and Clay Minerals, v.46, p.574-582. https://doi.org/10.1346/CCMN.1998.0460511
  20. Kuwahara, Y., Uehara, S. and Aoki, Y. (2001) Atomic Force Microscopy study of hydrothermal illite in Izumiyama pottery stone from Arita, Saga prefecture, Japan. Clays and Clay Minerals, v.49, p.300-309. https://doi.org/10.1346/CCMN.2001.0490404
  21. Kwon, S., Kim, S.-K. Lee., S.-H. and Park, K.G. (2012) Identification of the Singal Fault Zone in the Kiheung Reservoir Area by Geotechnical Investigations. Economic and Environmental Geology, v.45, p.295-306(in Korean with English abstract). https://doi.org/10.9719/EEG.2012.45.3.295
  22. Lee, D.-S. (1987) Geology of Korea. Geological Society of Korea, Kyohak-sa. 514p.
  23. Lee, Y.S., Min, K.D. and Hwang, J.H. (2001) The geodynamic evolution of the Chugaryeong Fault Valley in a View Point of Paleomagntism. Economic and Environmental Geology, v.34, p.555-571.
  24. Oh, I.S. and Yuhn, Y.Y. (1972) Explanatory text of the geological map of Suweon sheet (1:50,000), KIGAM.
  25. Pevear, D.R. (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Kharaka, Y.K. and Maest, A.S. (eds.) Water-Rock interaction. Balkema, Rotterdam, p.1251-1254.
  26. Pevear, D.R. (1999) Illite and hydrocarbon exploration. Proceedings of the National Academy of Sciences of the United States of America, v.96 n.7, p.3440-3446. https://doi.org/10.1073/pnas.96.7.3440
  27. Rahl, J.M., Haines, S.H. and van der Pluijm, B.A. (2011) Links between orogenic wedge deformation and erosional exhumation: Evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees. Earth and Planetary Science Letters, v.307, p.180-190. https://doi.org/10.1016/j.epsl.2011.04.036
  28. Reynolds, R.C.Jr. (1994) WILDFIRE: a computer program for the calculation of three dimensional X-ray diffraction patterns of mica polytypes and their disordered variation. 8 Brook Rd.
  29. Schleicher, A.M., van der Pluijm, B.A. and Warr, L.N. (2010) Nanocoatings of clay and creep of the San Andreas fault at Perkfield, California. Geology, v.38, p.667-670. https://doi.org/10.1130/G31091.1
  30. Schleicher, A.M., Warr, L.N., Kober, B., Laverret, E. and Clauer, N. (2006) Episodic mineralization of hydrothermal illite in the Soultz-sous-Forts granite (Upper Rhine Graben, France). Contributions to Mineralogy and Petrology, v.152, p.349-364. https://doi.org/10.1007/s00410-006-0110-7
  31. Song, Y., Chung, D., Choi, S.-J., Kang, I.-M., Park, C., Itaya, T. and Yi, K. (2014) K-Ar illite dating to constrain multiple events in shallow crustal rocks: Implications for the Late Phanerozoic evolution of NE Asia. Journal of Asian Earth Sciences (in Submitted).
  32. Solum, J.G., van der Pluijm, B.A. and Peacor, D.R. (2005) Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah. Journal of Structural Geology, v.27, p.1563-1576. https://doi.org/10.1016/j.jsg.2005.05.002
  33. Srodon, J. and Eberl, D.D. (1984) Illite. In Bailey, S.W. (ed.) Micas, Reviews in Mineralogy. Mineralogical Society of America, Washington DC. 13, p.495-544.
  34. van der Pluijm, B.A., Hall, C.M., Vrolijk, P.J., Pevear, D.R., and Covey, M.C. (2001) The dating of shallow faults in the Earth's crust. Nature, v.412, p.172-175. https://doi.org/10.1038/35084053
  35. van der Pluijm, B.A., Hall, C.M., Vrolijk, P.J., Pevear, D.R. and Covey, M.C. (2001) The dating of shallow faults in the Earth's crust. Nature, v.412, p.172-175. https://doi.org/10.1038/35084053
  36. van der Pluijm, B.A., Vrolijk, P.J., Pevear, D.R., Hall, C.M. and Solum, J.G. (2006) Fault dating in the Canadian Rocky Mountains; Evidence for late Cretaceous and early Eocene orogenic pulse. Geology, v.34, p.837-840. https://doi.org/10.1130/G22610.1
  37. Vrolijk, P. and van der Pluijm, B.A. (1999) Clay gouge. Journal of Structural Geology, v.21, p.1039-1048. https://doi.org/10.1016/S0191-8141(99)00103-0
  38. Ylagan, R.F., Pevear, D.R. and Vrolijk, P.J. (2000) Discussion of "Extracting K-Ar ages from shales: a theoretical test". Clay Minerals, v.35 p.599-604. https://doi.org/10.1180/000985500546918

Cited by

  1. Reactivated Timings of Inje Fault since the Mesozoic Era vol.48, pp.1, 2015, https://doi.org/10.9719/EEG.2015.48.1.41
  2. Reactivated Timings of Yangsan Fault in the Sangcheon-ri Area, Korea vol.49, pp.2, 2016, https://doi.org/10.9719/EEG.2016.49.2.97
  3. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies 2017, https://doi.org/10.1016/j.jseaes.2017.08.002
  4. Geoheritage Values of the Quaternary Hantangang River Volcanic Field in the Central Korean Peninsula pp.1867-2485, 2019, https://doi.org/10.1007/s12371-018-0329-5