The Late Cretaceous Emplacement Age of Masan Hornblende-Biotite Granite

마산 각섬석-흑운모 화강암의 연령: 후기 백악기 정치연령

  • Lee, Tae-Ho (Division of Earth and Environmental Sciences, Pukyong National University) ;
  • Park, Kye-Hun (Division of Earth and Environmental Sciences, Pukyong National University) ;
  • Kim, Jeongmin (Division of Earth and Environmental Sciences, Korea Basic Science Institute) ;
  • Kim, Myoung Jung (Division of Earth and Environmental Sciences, Pukyong National University)
  • 이태호 (부경대학교 일반대학원 지구환경시스템과학부) ;
  • 박계헌 (부경대학교 일반대학원 지구환경시스템과학부) ;
  • 김정민 (한국기초과학지원연구원 지구환경연구부) ;
  • 김명정 (부경대학교 일반대학원 지구환경시스템과학부)
  • Received : 2017.01.23
  • Accepted : 2017.03.14
  • Published : 2017.03.31


We have dated the K-Ar, Ar-Ar and U-Pb ages of the Masan hornblende-biotite granite in the southern Cretaceous Gyeongsang basin to constrain its emplacement age. The ~108 Ma hornblende K-Ar age obtained in the study is similar to the previously reported Rb-Sr age. However, the single grain total fusion $^{40}Ar/^{39}Ar$ dating on hornblende failed to yield statistically meaningful ages because the isotopic system was open during its alteration. Thus the hornblende K-Ar age in the study is also unlikely to be reliable. The single grain total fusion $^{40}Ar/^{39}Ar$ dating on biotite yielded an average age of $75.8{\pm}3.0Ma$. Apart from scattered data in the range of ~45-75 Ma, the average age increased to ~80 Ma. The SHRIMP and LA-MC-ICPMS U-Pb isotopic compositions of zircon from the Masan hornblende-biotite granite yielded its emplacement age as $87.6{\pm}2.7Ma$ and $86.8{\pm}0.4Ma$, respectively. It is thus likely that the ~80 Ma $^{40}Ar/^{39}Ar$ age of biotite might reflect the cooling age of Masan hornblende-biotite granite or the thermal influences from later intense igneous activities in the Gyeongsang basin.

백악기 경상분지 남부의 마산 각섬석-흑운모 화강암의 정치연령을 규명하기 위하여 K-Ar, Ar-Ar 및 U-Pb 연대측정을 수행하였다. 각섬석 K-Ar 연대측정으로 구한 약 108 Ma의 연령은 이전에 보고된 Rb-Sr 연령과 비슷하다. 그러나 단입자 전용융으로 구한 각섬석 $^{40}Ar/^{39}Ar$ 연대측정 결과는 분산이 심하여 의미있는 연령을 구할 수 없었으며 이는 각섬석의 변질에 의한 동위원소계의 교란영향으로 평가된다. 따라서 동일 암석에서 분리한 각섬석에 대한 K-Ar 연대측정 결과 역시 신뢰하기 어렵다. 흑운모에 대한 단입자 전용융 $^{40}Ar/^{39}Ar$ 연대측정 결과는 평균 $75.8{\pm}3.0Ma$의 결과가 구해졌으며, 젊은 쪽으로 분산되는 45-75 Ma 범위의 값을 제거하면 약 80 Ma의 연령이 산출된다. 한편 SHRIMP와 LA-MC-ICPMS로 저어콘에 대한 U-Pb 연대측정을 수행하여 구한 마산 각섬석-흑운모 화강암의 정치연령은 각각 $87.6{\pm}2.7Ma$$86.8{\pm}0.4Ma$이다. 약 80 Ma의 흑운모 $^{40}Ar/^{39}Ar$ 연령은 마산 각섬석-흑운모 화강암의 냉각연령을 반영하는 것이거나 또는 주변에서 일어난 경상분지 내의 강한 화성활동에 의한 열적 교란의 영향일 수 있다.



Supported by : 부경대학교


  1. Cheong, C.-S. and Chang, H.-W., 1996, Tectono-magmatism, -metamorphism, and -mineralization of the central Ogcheon belt, Korea (I): Sr, Nd and Pb isotopic systematics and geochemistry of granitic rocks in the Boeun area. Journal of the Geological Society of Korea, 32, 91-116.
  2. Cheong, C.-s. and Kim, N., 2012, Review of radiometric ages for Phanerozoic granitoids in Southern Korean peninsula. Journal of the Petrological Society of Korea, 21, 173-192.
  3. Choi, Y.K. and Kim, T.Y., 1963, Explanatory text of the geological map of Uiryong sheet (1:50,000). Geological Survey of Korea, 7p.
  4. Choo, S.H. and Kim, D.H, 1981, Rb/Sr age determination of Yoocheon granite, Changweon granite and Andong granite and granitic gneiss. Korea Institute of Energy and Resources, Research Report, 12, 183-195.
  5. Dodson, M.H., 1973, Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40, 259-274.
  6. Harrison, T.M., 1982, Diffusion of 40Ar in hornblende. Contributions to Mineralogy and Petrology, 78, 324-331.
  7. Harrison, T.M., Duncan, I., and McDougall, I., 1985, Diffusion of 40Ar in biotite: Temperature, pressure and compositional effects. Geochimica et Cosmochimica Acta, 49, 2461-2468.
  8. Hwang, S.K., An, Y.M., and Yi, K., 2011, SHRIMP U-Pb age dating and volcanism times of the igneous rocks in the Cheolwon Basin, Korea. Journal of the Petrological Society of Korea, 20, 231-241.
  9. Hwang, J.H. and Kihm, Y.H., 2007, Geological report of the Jipori sheet (1:50,000). Korea Institute of Geosciences and Mineral Resources, 54p.
  10. Jin, M.-S., Seo, H.J., Lee, J.S., Chi, S.J., Kim, S.J., Kim, T.K., and Shin, S.-C., 1991, Petrology and geochemical studies on the geothermal energy of the hot dry rock in South Korea (II). Korea Institute of Energy and Resources, Research Report, KR-91(T)-22, 168p.
  11. Jo, H., Cheong, A.C.-s., Ryu, J.-S., Kim, N., Yi, K., Jung, H., and Li, X.-H., 2016, In-situ oxygen isotope records of crustal self-cannibalization selectively captured by zircon crystals from high-$\delta$26Ma granitoids. Geology, 44, 339-342.
  12. Kim, C.-S., Park, K.-H., and Paik, I.-S., 2005, $^{40}Ar/^{39}Ar$ age of the volcanic pebbles within the Silla Conglomerate and the deposition timing of the Hayang Group. Journal of the Petrological Society of Korea, 14, 38-44.
  13. Kim, J., 2001, New K-Ar dating system in Korea Basic Science Institute: summary and performance. Journal of the Petrological Society of Korea, 10, 172-178.
  14. Kim, J. and Jeon, S.-i., 2015, $^{40}Ar/^{39}Ar$ age determination using ARGUS VI multiple-collector noble gas mass spectrometer: performance and its application to geosciences. Journal of Analytical Science and Technology, 6, DOI 10.1186/s40543-015-0049-2.
  15. Kim, J.H. and Kim, J.T., 1963, Explanatory text of the geological map of Masan sheet (1:50,000). Geological Survey of Korea, 26p.
  16. Kim, J.-S., Cho, H., Kim, H.-G., and Son, M., 2013, SHRIMP U-Pb zircon ages of the Gusandong (Kusandong) Tuff in the Cretaceous Gyeongsang Basin. Journal of the Petrological Society of Korea, 22, 235-249.
  17. Kim, K.-K., Jwa, Y.-J., Hong, S.-S., and Lee, K.-W., 2015, A comparative study on the whole rock magnetic susceptibility and SHRIMP zircon U-Pb geochronology of the domestic dimension stone and Chinese similar dimension stone. Journal of the Petrological Society of Korea, 24, 273-289.
  18. Kim, M.J., Park, J.-W., Lee, T.-H., Song, Y.-S., and Park, K.-H., 2016, LA-MC-ICPMS U-Pb ages of the detrital zircons from the Baengnyeong Group: implications of the dominance of the Mesoproterozoic zircons. Economic and Environmental Geology, 49, 433-444.
  19. Kim, N.J. and Lee, H.K., 1964, Explanatory text of the geological map of Yongsan sheet (1:50,000). Geological Survey of Korea, 31p.
  20. Kim, S.W., Kwon, S., Ryu, I.-C., Jeong, Y.-J., Choi, S.-J., Kee, W.-S., Yi, K., Lee, Y.S., Kim, B.C., and Park, D.W., 2012, Characteristics of the Early Cretaceous igneous activity in the Korean Peninsula and tectonic implications. The Journal of Geology, 120, 625-646.
  21. Kim, S.W., Kwon, S., Park, S.-I., Lee, C., Cho, D.-L., Lee, H.-J., Ko, K., and Kim, S.J., 2016, SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: a new tectonic model of the Cretaceous Korean Peninsula. Lithos, 262, 88-106.
  22. Kim, Y.B., Choi, S.J., and Cho, D.-L., 2014. Geological Report of the Yeongam Sheet (1:50,000). Daejon, Korea Institute of Geoscience and Mineral Resources, 50p.
  23. Lee, J.I., Kagami, H., and Nagao, K., 1995, Rb-Sr and KAr age determination of the granitic rocks in the southern part of the Kyeongsang basin, Korea: implication for cooling history and evolution of granitic magmatism during late Cretaceous. Geochemical Journal, 29, 363-376.
  24. Lee, S.-G., Shin, S.-C., Kim, K.-H., Lee, T., Koh, H., and Song, Y.-S., 2010, Petrogenesis of three Cretaceous granites in the Okcheon Metamorphic Belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, 17, 87-101.
  25. Lee, T.-H., Park, K.-H., Chun, J.-S., and Yi, K., 2010, SHRIMP U-Pb zircon ages of the Jinju Formation and Silla Conglomerate, Gyeongsang Basin. Journal of the Petrological Society of Korea, 19, 89-101.
  26. Lee, T.-H., Park, K.-H., and Yi, K., 2014, SHRIMP U-Pb detrital zircon ages in the Haman Formation and the Jindong Formation, Gyeongsang basin (abstract). 2014 Annual Meeting of the Geological Society of Korea, 162.
  27. Lee, Y.J., 1980, Granitic rocks from the southern Gyeongsang Basin, Southeastern Korea. Part 1. General geology and K-r ages of granitic rocks. Geosciences, 75, 105-116.
  28. Ludwig, K.R., 2008, User's manual for Isoplot 3.6: a geochronological toolkit for Microsoft Excel. Berkeley, CA, Berkeley Geochronology Center Special Publication, 4, 77p.
  29. Ludwig, K.R., 2009, SQUID 2: a user's manual. Berkeley, CA, Berkeley Geochronology Center Special Publication, No. 2, 100p.
  30. Mezger, K., Hanson, G.N., and Bohlen, S.R., 1989, Highprecision U-Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth and Planetary Science Letters, 96, 106-118.
  31. Park, K.-H., 2012, Cyclic igneous activities during the Late Paleozoic to Early Cenozoic period over the Korean peninsula. Journal of the Petrological Society of Korea, 21, 193-202.
  32. Sagong, H., Kwon, S.-T., and Ree, J.-H., 2005, Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, 24, TC5002, doi:10.1029/2004TC001720.
  33. Wee, S.M., Choi, S.G., Ryu, I.C., and Shin, H.J., 2006, Geochemical characteristics of the Cretaceous Jindong granites in the southwestern Part of the Gyeongsang Basin, Korea: Focussed on adakitic signatures. Econonomic and Environmental Geology, 39, 555-566.
  34. Williams, I.S., Cho, D.-L., and Kim, S.W., 2009, Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea: Constraints on Triassic post-collisional magmatism. Lithos, 107, 239-256.
  35. Wu, F.-Y., Han, R.-H., Yang, H.-H., Wilde, S.A., Zhai, MG., and Park, S.-C., 2007, Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chemical Geology, 238, 232-248.
  36. Yi, K., Cheong, C.S., Kim, N., Lee, S., and Choi, M.S., 2012, Mixing effects in zircon U-Pb ion microprobe dating: An example from a quartzofeldspathic dyke in the Yeongdeok pluton, southeastern Korea: Geochemical Journal, 46, 261-266, doi:10.2343/geochemj.2.0202.
  37. Zhang, Y.-B., Zhai, M., Hou, Q.-L., Li, T.-S., Liu, F., and Hu, B., 2012, Late Cretaceous volcanic rocks and associated granites in Gyeongsang Basin, SE Korea: their chronological ages and tectonic implications for cratonic destruction of the North China Craton. Journal of Asian Earth Sciences, 47, 252-264.