• 제목/요약/키워드: advection and diffusion

검색결과 136건 처리시간 0.023초

대청호 정체수역의 수질예측과 관리 (Management of Water Quality of Embayments in Daechong Reservoir)

  • 이종호
    • 환경영향평가
    • /
    • 제3권2호
    • /
    • pp.33-45
    • /
    • 1994
  • Water quality of Chongju and Daejeon Water Intake Tower Region, embayments in Daechong Reservoir was found to be worse than that of main lake after analysis of water which were sampled during April, July, October in 1993. Concentration of COD and SS at those two water intake tower sites were 2.8-5.6 mg/l and 2.2-3.2 mg/l, higher than that of main lake. T-N concentration of those two sites was 1.1-1.9 mg/l similar to that of main lake, and T-P concentration of those two sites was 0.14-0.18 mg/l, higher than that of main lake. This study used water quality model of embayment which can analyse pollutant loads from stream and surrounding land use, advection, decay, and diffusion transport between embayment and main lake. The model can predict water quality of embayment according to the change of pollutant load, water elevation of embayment, quantity of water intake in order to suggest water quality management. This study suggests embayment water quality management alternatives, 1) construction of waste water treatment facilities at embayment and main lake for the decrease of pollutant loading, 2) water intake at main lake less polluted or eutrophicated than embayment, and 3) outflow elevation selection for polluted hypolimnion water outflow during stratification.

  • PDF

Numerical simulation of single-phase two-components flow in naturally fractured oil reservoirs

  • Debossam, Joao Gabriel Souza;dos Santos Heringer, Juan Diego;de Souza, Grazione;Souto, Helio Pedro Amaral
    • Coupled systems mechanics
    • /
    • 제8권2호
    • /
    • pp.129-146
    • /
    • 2019
  • The main goal of this work is to develop a numerical simulator to study an isothermal single-phase two-component flow in a naturally fractured oil reservoir, taking into account advection and diffusion effects. We use the Peng-Robinson equation of state with a volume translation to evaluate the properties of the components, and the discretization of the governing partial differential equations is carried out using the Finite Difference Method, along with implicit and first-order upwind schemes. This process leads to a coupled non-linear algebraic system for the unknowns pressure and molar fractions. After a linearization and the use of an operator splitting, the Conjugate Gradient and Bi-conjugated Gradient Stabilized methods are then used to solve two algebraic subsystems, one for the pressure and another for the molar fraction. We studied the effects of fractures in both the flow field and mass transport, as well as in computing time, and the results show that the fractures affect, as expected, the flow creating a thin preferential path for the mass transport.

고리형 약물분출 스텐트 주위 벽전단응력의 영향에 대한 수치해석 (Numerical Analysis on the Effect of Wall Shear Stress Around the Ring Drug-Eluting Stent)

  • 서태원
    • 대한기계학회논문집B
    • /
    • 제31권1호
    • /
    • pp.21-28
    • /
    • 2007
  • The use of drug-eluting stents has dramatically reduced the incidence of restenosis however, much remains to be teamed about the performance of these stouts. In the present study, we tested the hypothesis that the design of drug-eluting stents influences the efficacy of local drug delivery to the arterial wall and that this effect depends on both arterial geometry and the prevailing flow conditions. We performed computational simulations in which the coupled Navier-Stokes and advection-diffusion equations were solved to determine the flow field and drug concentration in the vicinity of model drug-eluting stouts It is found that the characteristics of flow phenomena can be influenced greatly by the ratio of stent diameter to vessel diameter. The presence of drug-eluting stent may have profound effect on wall shear stresses, recirculation sizes and drug distributions. The results show that recirculation zone is influenced by the imposed flow conditions and stent diameter. In pulsatile flow, the low wall shear stress and high drug concentration occur along the arterial wall during the decelerating flow conditions. These results could provide the guideline for future drug-eluting stent designs toward reducing restenosis by affecting local wall shear stress distributions associated with neointimal hyperplasia.

수로망에서의 오염물질 확산의 1차원 예측 (One-D Model Prediction of Pollutant Transport at a Canal Network)

  • Lee, Jung-Lyul;Hsiang Wang
    • 한국해안해양공학회지
    • /
    • 제6권1호
    • /
    • pp.51-60
    • /
    • 1994
  • 여유고에서 오염물질의 이동과 확산을 효율적으로 모의할 수 있는 Lagragian 기법을 이용한 1차원 수치모델이 재발되어 미국 플로리다주의 Burnt Store Isles의 수로망(canal network)으로 유입되는 오염물질에 대해서 적용되었다. 본 수력학 모델은 음해법으로 수치해석되었다. 수치 영역은 크게 주수로와 여유고(storage)로 대별되며 지수로(finger canal)와 지류(tributary)들은 수로망을 단순화하기 위하여 여유고로 간주되었다. 수치실험 결과는 현장실험결과와 비교하여 비교적 잘 일치하고 있음을 보여준다.

  • PDF

Development of a Computer Code for Low-and Intermediate-Level Radioactive Waste Disposal Safety Assessment

  • Park, J.W.;Kim, C.L.;Lee, E.Y.;Lee, Y.M.;Kang, C.H.;Zhou, W.;Kozak, M.W.
    • Journal of Radiation Protection and Research
    • /
    • 제29권1호
    • /
    • pp.41-48
    • /
    • 2004
  • A safety assessment code, called SAGE (Safety Assessment Groundwater Evaluation), has been developed to describe post-closure radionuclide releases and potential radiological doses for low- and intermediate-level radioactive waste (LILW) disposal in an engineered vault facility in Korea. The conceptual model implemented in the code is focused on the release of radionuclide from a gradually degrading engineered barrier system to an underlying unsaturated zone, thence to a saturated groundwater zone. The radionuclide transport equations are solved by spatially discretizing the disposal system into a series of compartments. Mass transfer between compartments is by diffusion/dispersion and advection. In all compartments, radionuclides ate decayed either as a single-member chain or as multi-member chains. The biosphere is represented as a set of steady-state, radionuclide-specific pathway dose conversion factors that are multiplied by the appropriate release rate from the far field for each pathway. The code has the capability to treat input parameters either deterministically or probabilistically. Parameter input is achieved through a user-friendly Graphical User Interface. An application is presented, which is compared against safety assessment results from the other computer codes, to benchmark the reliability of system-level conceptual modeling of the code.

단일 균열암반에서 핵종/콜로이드 복합이동에 대한 수치모델 개발 (Development of the Numerical Model for Complex Transport of Radionuclide and Colloid in the Single Fractured Rock)

  • 이상화;김정우;정종태
    • 방사성폐기물학회지
    • /
    • 제10권4호
    • /
    • pp.237-246
    • /
    • 2012
  • 본 연구에서는 콜로이드와 핵종의 복합이동에 관한 수치모델을 개발하였다. 콜로이드와 핵종의 반응-이동 지배방정식을 풀기 위하여 Operator Splitting Method 중 Strang의 분리 SNI 방식을 수치해석 방법으로 채택하였고 이는 MATLAB을 이용하여 코드화 되었다. 개발된 수치모델은 용질의 이동 및 분산만을 고려한 해석해를 통한 검증과정에서 피어슨 상관계수의 제곱값($r^2$)이 0.99 이상으로 나타나 모델의 정확성이 입증되었다.

2차원 압축공기-물의 압축성 이상 유동 수치 해석 (Numerical Analysis for Two-Dimensional Compressible and Two-Phase Flow Fields of Air-Water in Eulerian Grid Framework)

  • 박찬욱;이승수
    • 대한기계학회논문집B
    • /
    • 제32권6호
    • /
    • pp.429-445
    • /
    • 2008
  • Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of each phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe‘s approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated.

Level Set 방법을 이용한 영상분할 알고리즘 (Video Segmentation using the Level Set Method)

  • 김대희;호요성
    • 대한전자공학회논문지SP
    • /
    • 제40권5호
    • /
    • pp.303-311
    • /
    • 2003
  • MPEG-4 표준에서는 객체 단위의 부호화를 수행하기 위해 우선 자연영상으로부터 비디오 객체론 분리하는 영상분할(Segmentation) 기술이 필요하다. 영상분할 방법은 크게 자동 영상분할(Automatic Segment값ion)과 반자동 영상분할(Semi-automatic Segmentation)의 두 부류로 나눌 수 있다. 대부분의 자동 영상분할 방법은 비디오 객체의 명확한 모델을 수학적으로 제시하기 어려우므로 한 화면에서 개별 객체를 추출하기 어렵기 때문에 그 성능에 한계가 있다. 본 논문에서는 이러한 문제점을 극복하기 위해 기하학적인 Active Contour를 이용한 반자동 영상분할 알고리즘을 제안한다. 매개변수 방식의 Active Contour와 달리, 기하학적인 Active Contour는 곡선의 변화론 Level Set 방법을 이용하여 기술하기 때문에 초기 곡선의 모양을 객체의 모양과 무관하게 그릴 수 있다. 평탄화된 영상으로부터 경계함수를 생성하기 위해 이진화된 3차원 확산 모델을 사용하여 LUV 벡터 공간에서 비등방형 확산을 수행한다. 본 논문에서는 흐름 벡터장(Advection Vector Field)에서 곡선을 수축하고, 움직임 정보를 이용하여 곡선 확장하는 방법을 이용하여 동영상에서 객체를 분리하는 방법을 제안한다.

물리적 모델에 기반한 다상 유체 현상 애니메이션 (A Physics-Based Modelling of Multipbase Fluid Phenomena)

  • 송오영;신현철;고형석
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제10권3호
    • /
    • pp.52-60
    • /
    • 2004
  • This paper presents a physically based technique for simulating complex multiphase fluids. This work is motivated by the "stable fluids" method developed by Stam to handle gaseous fluids. We extend this technique to water, which calls for the development of methods for modeling multiphase fluids and suppressing dissipation. We construct a multiphase fluid formulation by combining the Navier-Stokes equations with the level set method. By adopting constrained interpolation profile (CIP)-based advection, we reduce the numerical dissipation and diffusion significantly. We further reduce the dissipation by converting potentially dissipative cells into droplets or bubbles that undergo Lagrangian motion. Due to the multiphase formulation, the proposed method properly simulates the interaction of water with surrounding air, instead of simulating water in a void space. Moreover. the introduction of the non-dissipative technique means that, in contrast 10 previous methods, the simulated water does not unnecessarily lose mass and its motion is not damped to an unphysical extent. Experiments showed that the proposed method is stable and runs fast. It is demonstrated that two-dimensional simulation runs in real-time.

  • PDF

물리적 모델에 기반한 다상 유체 현상 애니메이션 (A Physics-Based Modelling of Multiphase Fluid Phenomena)

  • 송오영;신현철;고형석
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제10권4호
    • /
    • pp.13-21
    • /
    • 2004
  • This paper presents a physically based technique for simulating complex multiphase fluids. This work is motivated by the "stable fluids" method developed by Stam to handle gaseous fluids. We extend this technique to water, which calls for the development of methods for modeling multiphase fluids and suppressing dissipation. We construct a multiphase fluid formulation by combining the Navier-Stokes equations with the level set method. By adopting constrained interpolation profile (CIP)-based advection, we reduce the numerical dissipation and diffusion significantly. We further reduce the dissipation by converting potential1y dissipative cel1s into droplets or bubbles that undergo Lagrangian motion. Due to the multiphase formulation, the proposed method properly simulates the interaction of water with surrounding air, instead of simulating water in a void space. Moreover, the introduction of the non-dissipative technique means that, in contrast to previous methods, the simulated water does not unnecessarily lose mass and its motion is not damped to an unphysical extent. Experiments showed that the proposed method is stable and runs fast. It is demonstrated that two-dimensional simulation runs in real-time.

  • PDF