• Title/Summary/Keyword: advanced oxidation

Search Result 900, Processing Time 0.028 seconds

Thermal Emissivity of a Nuclear Graphite as a Function of Its Oxidation Degree (2) - Effect of Surface Structural Changes -

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Eung-Seon;Chi, Se-Hwan;Kim, Suk-Hwan;Lee, Sang-Woo
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.300-304
    • /
    • 2009
  • Thermal emissivity of nuclear graphite was measured with its oxidation degree. Commercial nuclear graphites (IG-110, PECA, IG-430, and NBG-18) have been used as samples. Concave on graphites surface increased as its oxidation degree increased, and R value (Id/Ig) of the graphites decreased as the oxidation degree increased. The thermal emissivity increased depending on the decrease of the R (Id/Ig) value through Raman spectroscopy analysis. It was determined that the thermal emissivity was influenced by the crystallinity of the nuclear graphite.

Effect of Al and Cr on Oxidation of Fe-Al and Fe-Cr Alloys (Fe-Al과 Fe-Cr계 합금의 내 산화성에 미치는 Al과 Cr의 영향)

  • Kim, Tae-Wan;Jo, Seung-Hoon;Ko, In-Yong;Doh, Jung-Mann;Yoon, Jin-Kook;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.981-988
    • /
    • 2010
  • The effects of Cr and Al contents in Fe-Al and Fe-Cr alloys on oxidation resistance, hardness, and the thermal expansion coefficient were investigated. Fe-Al and Fe-Cr alloys above 10wt.%Al and 20wt.%Cr contents have a high oxidation resistance. The hardness of the Fe-Al and Fe-Cr alloys increased with an increase in Al and Cr contents due to solid solution or formation of an intermetallic compound. The coefficients of thermal expansion of the Fe-Al alloys were higher than those of the Fe-Cr alloys because the coefficient of thermal expansion of Al was higher than that of Fe and Cr.

Removal Characteristics of 1,4-dioxane with O3/H2O2 and O3/Catalyst Advanced Oxidation Process (O3/H2O2와 O3/Catalyst 고급산화공정에서 1,4-dioxane의 제거 특성)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Advanced oxidation processes involving $O_3/H_2O_2$ and $O_3/catalyst$ were used to compare the degradability and the effect of pH on the oxidation of 1,4-dioxane, Oxidation processes were carried out in a bubble column reactor under different pH. Initial hydrogen peroxide concentration was 3.52 mM in $O_3/H_2O_2$ process and 115 g/L (0.65 wt.%) of activated carbon impregnated with palladium was packed in $O_3/catalyst$ column. 1,4-dioxane concentration was reduced steadily with reaction time in $O_3/H_2O_2$ oxidation process, however, in case of $O_3/catalyst$ process, about $50{\sim}75%$ of 1,4-dioxane was degraded only in 5 minutes after reaction. Overall reaction efficiency of $O_3/catalyst$ was also higher than that of $O_3/H_2O_2$ process. TOC and $COD_{cr}$ were analyzed in order to examine the oxidation characteristics with $O_3/H_2O_2\;and\;O_3/catalyst$ process. The results of $COD_{cr}$ removal efficiency and ${\Delta}TOC/{\Delta}ThOC$ ratio in $O_3/catalyst$ process gave that this process could more proceed the oxidation reaction than $O_3/H_2O_2$ oxidation process. Therefore, it was considered that $O_3/catalyst$ advanced oxidation process could be used as a effective oxidation process for removing non-degradable toxic organic materials.

The Oxidation Behavior of Sintered STS 316L at High-Temperature in the Air (STS 316L 소결체의 대기중 고온산화 거동)

  • Kim, Hye Seong;Lee, Jong Pil;Park, Dong Kyu;Ahn, In Shup
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.432-438
    • /
    • 2013
  • In this study, analysis on the oxidation behavior was conducted by a series of high-temperature oxidation tests at both $800^{\circ}C$, $900^{\circ}C$ and 1000 in the air with sintered STS 316L. The weight gain of each oxidized specimen was measured, the oxidized surface morphologies and composition of oxidation layer were analyzed with Scanning Electron Microscope-Energy Dispersive x-ray Spectroscopy (SEM-EDS), finally, the phase change and composition of the oxidized specimen were shown by X-Ray Diffraction (XRD). As a result, the weight gain increased sharply at $1000^{\circ}C$ when oxidation test was conducted for 210 hours. Also, a plentiful of pores were observed in the surface oxidation layers at $900^{\circ}C$ for 210 hours. In addition, the following conclusions on oxidation behavior of sintered STS 316L can be obtained: $Cr_2O_3$ can be formed on pores by influxing oxygen through open-pores, $(Fe_{0.6}Cr_{0.4})_2O_3$ can be generated on the inner oxidation layer, and $Fe_2O_3$ was on the outer oxidation layer. Also, $NiFe_2O_4$ could be precipitated if the oxidation time was kept longer.

Oxidation of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-0.45%C Alloys at 550-650 ℃

  • Park, Soon Yong;Xiao, Xiao;Kim, Min Ji;Lee, Geun Taek;Hwang, Dae Ho;Woo, Young Ho;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • Alloys of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-(0.4-0.5)%C were oxidized at 550 ℃ to 650 ℃ for 20 h to understand effects of alloying elements on oxidation. Their oxidation resistance increased with increasing Mn level to a small extent. Their oxidation kinetics changed from parabolic to linear when Mn content was decreased and temperature was increasing. Oxide scales primarily consisted of Fe2O3, Mn2O3, and MnFe2O4 without any protective Al-bearing oxides. During oxidation, Fe, Mn, and a lesser amount of Al diffused outward, while oxygen diffused inward to form internal oxides. Both oxide scales and internal oxides consisted of Fe, Mn, and a small amount of Al. The oxidation of Mn and carbon transformed γ-matrix to α-matrix in the subscale. The oxidation led to the formation of relatively thick oxide scales due to inherently inferior oxidation resistance of alloys and the formation of voids and cracks due to evaporation of manganese, decarburization, and outward diffusion of cations across oxides.

Thermal Emissivity of Nuclear Graphite as a Function of Its Oxidation Degree (1) -Effects of Density, Porosity, and Microstructure-

  • Seo, Seung-Kuk;Roh, Jae-Seung;Kim, Eung-Seon;Chi, Se-Hwan;Kim, Suk-Hwan;Lee, Sang-Woo
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.225-229
    • /
    • 2009
  • Thermal emissivity of commercial nuclear graphites (IG-110, PCEA, IG-430 and NBG-18) following changes in oxidation degrees were examined. Specimens were oxidized to 0%, 5%, and 10% in air flow of 5l/min at $600^{\circ}C$ using a furnace, and the thermal emissivities were measured using an infrared spectrum analyzer. The measuring temperatures for the thermal emissivity were $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ $500^{\circ}C$. Also density and porosity of the specimens were observed to compare with thermal emissivity. Results showed that emissivity increased with oxidation, and the 10% oxidized NBG-18 showed the highest emissivity (0.890) which value is larger for 24% than the value of as-received specimen. Investigation of factors affecting the emissivity revealed that increases in the surface roughness and porosity due to oxidation were responsible for the increase in emissivity after oxidation.

The Effect of Sb Addition on the High Temperature Oxidation in the Steels (강중 Sb 첨가가 고온산화에 미치는 영향)

  • Oh, I.S.;Cho, K.C.;Kim, D.H.;Kim, G.M.;Sohn, I.R.
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.228-234
    • /
    • 2009
  • It is well known that the formation of $SiO_2$, $Al_2O_3$ and/or other oxides at the steel surface during the annealing process deteriorates the surface quality of galvanized steels. It is important to minimize oxide formation during the annealing process for the superior surface quality of galvanized steels. In order to minimize the oxide formation on the steel surface, antimony was chosen as an alloying element to the commercial steels. Then, the effect of alloying element on the oxidation behavior was investigated. A small amount of antimony was added to two types of steels, one with 0.1% C, 1.0% Si, 1.5% Mn, 0.08% P, and the other with 0.002% C, 0.001% Si, 0.104% Mn, 0.01% P. Then, the oxidation behavior was investigated from $650{\sim}900^{\circ}C$ in the air. The addition of antimony to the steels retarded the outward diffusion of elements during the oxidation, resulting in reduction of the oxidation rate.

High-Temperature Oxidation Behavior of Fe-22%Cr-5.8%Al Alloy (Fe-22%Cr-5.8%Al 합금의 고온 산화 거동)

  • Kim, Song-Yi;Choi, Sung-Hwan;Yun, Jung-Yeul;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • This study investigated the high temperature oxidation behavior of Fe-22%Cr-5.8%Al alloy and the oxidation kinetics of the alloy were discussed. Bulk samples were prepared by VAM (vacuum arc melting) and hot forging. High temperature oxidation testes were isothermally conducted up to 100 hours in 79%$N_2$+21%$O_2$ environment at three different temperatures ($900^{\circ}C$, $1000^{\circ}C$, $1100^{\circ}C$). The weight gain was measured after oxidation according to oxidation time (2, 4, 6, 8, 10, 15, 20, 25, 30, 60, 80, 100 hours). The weight gain significantly increased with increasing oxidation temperature. As the temperature increased, the oxidized samples showed sequential formation of $Al_2O_3$, Cr-rich oxide, Fe-rich oxide. The activation energy of high temperature oxidation was obtained as 306.63 KJ/mol. $Al_2O_3$ were developed on the surface in the early stage of oxidation, representing protective role of oxidation. However, Fe-based and Cr-based oxides leaded to breakaway of oxide layer, thus resulted in the significant increase of additional oxidation.

High-temperature Oxidation of ZrO2/Al2O3 Thin Films (ZrO2/Al2O3 박막의 고온산화)

  • Park, Soon Young;Yadav, Poonam;Abro, Muhammad Ali;Lee, Dong Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.117-117
    • /
    • 2014
  • Thin $ZrO_2/Al_2O_3$ films were deposited on a tool steel substrate using Zr and Al cathodes in a cathodic arc plasma deposition system (CAPD), and then oxidized at $600-900^{\circ}C$ in air for up to 50 h. They effectively suppressed the oxidation of the substrate up to $800^{\circ}C$ by acting as a barrier layer against the outward diffusion of the substrate elements and inward diffusion of oxygen. However, rapid oxidation occurred at $900^{\circ}C$ due mainly to the increased diffusion and subsequent oxidation of steel as well as the crystallization of amorphous $Al_2O__3$.

  • PDF

Oxidation of STS304 Stainless Steel between 1050 and 1200℃ for 1 Hour in Air (STS 304 스테인리스강의 대기중 1050~1200℃, 1시간 동안의 산화)

  • Nguyen, Thuan Dinh;Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.235-241
    • /
    • 2009
  • The STS304 stainless steel was oxidized isothermally and cyclically at temperatures between 1050 and $1200^{\circ}C$ for 1 hr in air. During isothermal oxidation, it displayed good oxidation resistance at $1050^{\circ}C$. However, it suffered from breakaway oxidation above $1100^{\circ}C$, being accompanied with internal oxidation. During cyclic oxidation, it also displayed good oxidation resistance at $1050^{\circ}C$, but it suffered from massive weight loss above $1125^{\circ}C$. The oxide scales formed consisted primarily of $Fe_2O_3$, $Fe_3O_4$ with and without $Cr_2O_3$. They were generally non-adherent.