DOI QR코드

DOI QR Code

High-Temperature Oxidation Behavior of Fe-22%Cr-5.8%Al Alloy

Fe-22%Cr-5.8%Al 합금의 고온 산화 거동

  • Kim, Song-Yi (School of Advanced Materials Engineering, Andong National University) ;
  • Choi, Sung-Hwan (School of Advanced Materials Engineering, Andong National University) ;
  • Yun, Jung-Yeul (Department of Materials Engineering, KIMM) ;
  • Kong, Young-Min (School of Materials Science Engineering, University of Ulsan) ;
  • Kim, Byoung-Kee (School of Materials Science Engineering, University of Ulsan) ;
  • Lee, Kee-Ahn (School of Advanced Materials Engineering, Andong National University)
  • 김송이 (안동대학교 신소재공학부) ;
  • 최성환 (안동대학교 신소재공학부) ;
  • 윤중열 (한국기계연구원 부설 재료연구소 기능재료연구본부) ;
  • 공영민 (울산대학교 첨단소재공학부) ;
  • 김병기 (울산대학교 첨단소재공학부) ;
  • 이기안 (안동대학교 신소재공학부)
  • Received : 2011.01.27
  • Accepted : 2011.02.27
  • Published : 2011.02.28

Abstract

This study investigated the high temperature oxidation behavior of Fe-22%Cr-5.8%Al alloy and the oxidation kinetics of the alloy were discussed. Bulk samples were prepared by VAM (vacuum arc melting) and hot forging. High temperature oxidation testes were isothermally conducted up to 100 hours in 79%$N_2$+21%$O_2$ environment at three different temperatures ($900^{\circ}C$, $1000^{\circ}C$, $1100^{\circ}C$). The weight gain was measured after oxidation according to oxidation time (2, 4, 6, 8, 10, 15, 20, 25, 30, 60, 80, 100 hours). The weight gain significantly increased with increasing oxidation temperature. As the temperature increased, the oxidized samples showed sequential formation of $Al_2O_3$, Cr-rich oxide, Fe-rich oxide. The activation energy of high temperature oxidation was obtained as 306.63 KJ/mol. $Al_2O_3$ were developed on the surface in the early stage of oxidation, representing protective role of oxidation. However, Fe-based and Cr-based oxides leaded to breakaway of oxide layer, thus resulted in the significant increase of additional oxidation.

Keywords

References

  1. J. G. Smeggil, A. W. Funkenbusch, N. S. Bornstein, Metall. Trans., 17 (1986) 923. https://doi.org/10.1007/BF02661258
  2. J. L. Smialek, Metall. Trans., 9A (1979) 309.
  3. P. A. Mari, J. M Chaiz, J. P. larin, Oxidation of Metal, 17 (1982) 315. https://doi.org/10.1007/BF00742114
  4. J. Jedlinski, G. Borchardt, Oxidation of Metals 36 (1991) 317. https://doi.org/10.1007/BF00662968
  5. M. H. Lagrange, A. M. Huntz, J. Y. Laval, Ann. Chim. Fr, 12 (1987) 9.
  6. I. M. Wolff, L. E. Iorio et al., Mater. Sci. Eng., A241 (1998) 264.
  7. Z. L. Zhang, D. Y. Li, X. Q. Dong, Acta Metall. Sin., 20 (2007) 87. https://doi.org/10.1016/S1006-7191(07)60012-X
  8. S. E. Sadique, A. H. Mollah, M. M. Ali et al., J. Corros. Sci. Eng., 1 (2000) 18.
  9. Y. Niu, S. Wang, F. Gao et al., Corros. Sci., 50 (2008) 345. https://doi.org/10.1016/j.corsci.2007.06.019
  10. R. Cueff, H. Buscail, E. Caudron et al., Corros. Sci., 45 (2003) 1815. https://doi.org/10.1016/S0010-938X(02)00254-8
  11. D. P. Whittle, J. Stringer, Phil. Trans. R. Soc. Lond, A295 (1980) 309.
  12. F. Clemendot, J. M. Gras, J. C. van Duysen, J. de Physique IV, 3 (1993) 291. https://doi.org/10.1051/jp4:1993447
  13. S. C. Choi, S. Park et al., Kor. J. Met. Mater, 35(1) (1997) 136.
  14. K. S. Lee, H. Y. Ra, J. Met. Mater., 34(1) (1996) 936.
  15. S. Hiroshi, K. Masski, Y. Keiichi, Kawasaki Steel Technical Report No., 31 (1994).
  16. B. G. Moon, S. C. Kang, G. M. Kim, J. Corros Sci. Soc. of Korea, 25(2) (1996) 149.
  17. Z. L. Zhang, X. J. Ahang, T. J. Pan et al., Gangtie Yanjiu, 35(3) (2007) 38.
  18. W. J. Quadakkers, J. Jedlinski, G. Borchardt et al., Appl Surf. Sci., 47 (1991) 261. https://doi.org/10.1016/0169-4332(91)90040-Q
  19. Y. C. Shin, K. S. Lee, W. W. Park, Kor. J. Met. Mater., 34(7) (1996) 936.
  20. K. Ishii, T. Kawasaki, J. Jpn. Inst. Met., 56 (1992) 854. https://doi.org/10.2320/jinstmet1952.56.7_854

Cited by

  1. Synthesis and Microstructure Analysis of NiO Catalysts Coated on the FeCrAl Metal Alloy Foam for Hydrogen Production vol.24, pp.8, 2014, https://doi.org/10.3740/MRSK.2014.24.8.393
  2. Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts vol.25, pp.8, 2015, https://doi.org/10.3740/MRSK.2015.25.8.391