• 제목/요약/키워드: adsorption application

검색결과 455건 처리시간 0.023초

충북지방(忠北地方) 답토양(沓土壤)에 대(對)한 PCP 흡착에 관한 연구(硏究) (A Study on PCP Adsorption in Various Paddy Soils of the Choongbook Area)

  • 옥환석;이재구
    • Applied Biological Chemistry
    • /
    • 제15권3호
    • /
    • pp.229-240
    • /
    • 1972
  • 토성에 따라 합리적인 PCP시용량을 결정하고 아울러 어독해의 추정으로 무어독 처리방법을 강구하기위한 기초자료를 얻고자 물리 화학적 성질을 달리하는 수종의 충북지방 답토양을 시료로 하여 PCP의 흡착관계를 살펴본바 그 결과는 다음과 같다 1. 토양의 점토함량, 전질소, 유기물, CEC, 치환성염기, 인산흡수계수등과 PCP 흡착과의 사이에는 正의 상관이, pH와는 부(負)의 상관을 보여 주었으나 모두 유의성은 인정되지 않았다. 그러나 점토함량, $H^+$, Mg 및 CEC와 PCP흡착과는 비교적 큰값을 보여주어 주목할만한 일이었다. 2. 토성별로 PCP흡착은 식토>양로>사질양토의 순이었다. 3. $H_2O_2$처리 토양에서의 PCP흡착은 현저하게 저하하지만 그 줄어든 비율은 부식의 함량에 비례하지는 않았다. 4. 치환성 염기처리토양에서의 PCP흡착은 $H^+$-토양>$K^+$-토양>$Na^+$-토양> $Ca^{++}$-토양>$Mg^{++}$-토양의 순이었다. 5. PCP의 흡착관계를 Langmuir's adsorption isotherm과 Freundlicr's adsorption isotherm으로 표현가능하며 이로서 PCP의 최대 흡착량과 결합 energy 및 흡착층(吸着層)의 길이를 산출할수 있었다. 6. 토성별로 PCP 최대흡착량을 보면 식양토는 213.13mg/100gr, 양토는 $97.28{\sim}121.59mg/100gr$, 사양토는 $32.93{\sim}91.74mg/100gr$ 이 었다. 7. 무어독처리를 위한 한계시용량의 혼합토층의 깊이는 진천토양이 0.88cm로 가장 얕은 그리고 내산리 사질양토는 4.29cm로 가장 깊은 혼합시용을 요한다.

  • PDF

KOH-activated graphite nanofibers as CO2 adsorbents

  • Yuan, Hui;Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.99-103
    • /
    • 2016
  • Porous carbons have attracted much attention for their novel application in gas storage. In this study, porous graphite nano-fiber (PGNFs)-based graphite nano fibers (GNFs) were prepared by KOH activation to act as adsorbents. The GNFs were activated with KOH by changing the GNF/KOH weight ratio from 0 through 5 at 900℃. The effects of the GNF/KOH weight ratios on the pore structures were also addressed with scanning electron microscope and N2 adsorption/desorption measurements. We found that the activated GNFs exhibited a gradual increase of CO2 adsorption capacity at CK-3 and then decreased to CK-5, as determined by CO2 adsorption isotherms. CK-3 had the narrowest micropore size distribution (0.6–0.78 nm) among the treated GNFs. Therefore, KOH activation was not only a significant method for developing a suitable pore-size distribution for gas adsorption, but also increased CO2 adsorption capacity as well. The study indicated that the sample prepared with a weight ratio of ‘3’ showed the best CO2 adsorption capacity (70.8 mg/g) as determined by CO2 adsorption isotherms at 298 K and 1 bar.

수중 이온 환경이 폐굴껍질에 대한 불소 이온의 흡착 양상에 미치는 영향 (The Influence of Aqueous Ionic, Condition on the Adsorption Features of Fluoride Ion on Waste Oyster Shell)

  • 이진숙;김동수
    • 한국물환경학회지
    • /
    • 제23권3호
    • /
    • pp.314-318
    • /
    • 2007
  • The feasibility of the employment of waste oyster shell as an adsorbent for fluoride ion has been tested by considering the effect ionic condition on the adsorption of fluoride ion on oyster shell. The adsorption capacity of oyster shell for fluoride ion was found not to be significantly influenced by the ionic strength of aqueous environment. The existence of complexing agent such as nitrilotriacetic acid in wastewater decreased the adsorbed amount of fluoride ion by forming a stable complex of $CaT^-$ and the adsorption reaction of fluoride ion on oyster shell was examined to be endothermic. The coexisting heavy metal ionic adsorbate in wastewater hindered the adsorption of fluoride ion, however, its adsorbed amount was increased as the particulate size of adsorbent was decreased. Finally, a serial adsorption column test has been conducted for a practical application of adsorption process and the breakthrough of the column adsorption was observed in 22 hours under the experimental condition.

커피 찌꺼기를 흡착제로 한 니켈 폐수 처리 특성 (Treatment Features of Ni Wastewater by using Coffee Grounds as the Adsorbent)

  • 서명순;김동수
    • 한국물환경학회지
    • /
    • 제21권1호
    • /
    • pp.14-20
    • /
    • 2005
  • A feasibility study has been conducted regarding the application of waste coffee grounds as an adsorbent for the treatment of nickel ion containing wastewater. The major variables which considered to influence the adsorbability of nickel ion were its initial concentration, reaction temperature, pH, and coexisting ion. The specific surface area of coffee grounds used in the experiment was found to be ca. $39.67m^2/g$, which suggesting its potential applicability as an adsorbent due to its relatively high surface area. In the experimental conditions, more than 90% of the initial amount of nickel ion was shown to adsorb within 15 minutes and equilibrium in adsorption was attained after 3 hours. The adsorption behavior of nickel ion was well explained by Freundlich model and kinetics study showed that the adsorption reaction was second-order. Adsorption was reduced with temperature and its change of enthalpy in standard state was estimated to be -807.05 kJ/mol. Arrhenius equation was employed for the calculation of the activation energy of adsorption and nickel ion was observed to adsorb on coffee grounds exoentropically based on thermodynamic estimations. As pH rose, the adsorption of nickel ion was diminished presumably due to the formation of cuboidal complex with hydroxide ion and the coexistence of cadmium ion was found to decrease the amount of nickel ion adsorption, which was proportional to the concentration of cadmium ion.

수열합성법으로 제조된 나노막대 구조 WO3의 광촉매 효과 및 염료 흡착 반응 (Photocatalytic and Adsorption Properties of WO3 Nanorods Prepared by Hydrothermal Synthesis)

  • 유수열;남충희
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.483-488
    • /
    • 2017
  • Transition-metal oxide semiconductors have various band gaps. Therefore, many studies have been conducted in various application fields. Among these, methods for the adsorption of organic dyes and utilization of photocatalytic properties have been developed using various metal oxides. In this study, the adsorption and photocatalytic effects of $WO_3$ nanomaterials prepared by hydrothermal synthesis are investigated, with citric acid added in the hydrothermal process as a structure-directing agent. The nanostructures of $WO_3$ are studied using transmission electron microscopy and scanning electron microscopy images. The crystal structure is investigated using X-ray diffraction patterns, and the changes in the dye concentrations adsorbed on $WO_3$ nanorods are measured with a UV-visible absorption spectrophotometer based on Beer-Lambert's law. The methylene blue (MB) dye solution is subjected to acid or base conditions to monitor the change in the maximum adsorption amount in relation to the pH. The maximum adsorption capacity is observed at pH 3. In addition to the dye adsorption, UV irradiation is carried out to investigate the decomposition of the MB dye as a result of photocatalytic effects. Significant photocatalytic properties are observed and compared with the adsorption effects for dye removal.

탄소나노튜브의 휴믹산 흡착특성에 관한 기초연구 (Investigation on the Adsorption Features of Humic Acid on Carbon Nanotubes)

  • 이선화;김동수
    • 한국물환경학회지
    • /
    • 제20권5호
    • /
    • pp.520-524
    • /
    • 2004
  • As a feasibility study for the application of carbon nanotubes to the treatment of environmental pollutants, the adsorption characteristics of humic acid on carbon nanotubes has been investigated. The dispersion features of carbon nanotubes in aquatic environment were investigated by measuring the variation of their electrokinetic potentials with pH, and the effects of some dispersants on their dispersion features were also examined. Under the experimental conditions, humic acid was observed to mostly adsorb on nanotubes within a few minutes and reach the equilibrium state within about one hour. The adsorption features of humic acid on nanotubes were found to follow the Freundlich model better than the Langmuir Model. Humic acid adsorbed on carbon nanotubes endothermically and the change of enthalpy in adsorption reaction was estimated to be ca. 18.37kJ/mol at standard state. The entropic change in adsorption reaction for humic acid was ca. 0.0503kJ/mol at standard state and the activation energy for adsorption was also estimated based on the change of rate constants with temperature. FT-IR investigations showed that the functional groups such as alcohol, ester, and aromatics existing in the chemical structure of humic acid might work as the bridge in its adsorption on nanotubes.

망간단괴-Cd 상호작용에 대한 등온흡착식 적용 (Application of Adsorption Isotherms for Manganese Nodule-Cadmium Interaction)

  • 전영신;김진화;김동수
    • 자원리싸이클링
    • /
    • 제8권1호
    • /
    • pp.37-43
    • /
    • 1999
  • 본 연구는 망간단괴와 그로부터 유가금속을 침출한 잔사를 카드뮴 폐수의 흡착제로 이용하는 기초실험으로 초기 카드뮴 농도에 따른 흡착성을 살펴보았다. 또한 이를 Freundlich, Langmuir, Temkin 등온흡착식에 적용하여 각 흡착계를 설명하였다. 카드뮴 이온의 초기농도가 증가함에 따라 흡착량은 증가하였으나 흡착성은 점차로 감소하는 경향을 보였다. 이를 Freundlich, Langmuir 식에 적용한 결과, 선형성을 나타내었다. 그리고 Freundlich 식에서 흡착제의 흡착능력을 평가하는 k값은 망간단괴가 11.72로 제일 컸다. 망간단괴의 경우는 Langmuirtlr의 단분자층을 형성하여 흡착되는 흡착질의 최대흡착량인 $X_m$값또한 0.16으로 침출잔사, 잔사-생단괴 혼합, 활성탄에 비해 큼을 알 수 있었다.

  • PDF

Design and Preparation of Magnetic CTAB/Montmorillonite Nanocomposite for Phenols Removal

  • Shen, Rong;Yu, Yichang;Wang, Yue;Xia, Zhining
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850123.1-1850123.9
    • /
    • 2018
  • The cetyltrimethyl ammonium bromide (CTAB)-modified montmorillonite (MMT) was synthesized via a novel "dissolution and reassembly" method. To determine the optimal formula, the adsorption of C.I. Reactive Red 2 (X3B) with CTAB/MMT was investigated. The optimal CTAB/MMT nanocomposite was used to remove 2,6-dichlorophenol and p-nitrophenol from aqueous solutions. The adsorption results can be described by Langmuir isotherm, and the adsorption capacities were 200 mg/g and 125 mg/g for 2,6-dichlorophenol and p-nitrophenol, respectively. To realize the quick separation and recycle, the magnetic CTAB/MMT was further strategized and synthesized. The adsorption equilibrium time was 15 min for both contaminants; the ions' strength showed a little bit of influence on the adsorption performance. In addition, compared with acidic condition, neutral condition was more beneficial to the adsorption reaction. Due to the addition of $Fe_3O_4$, the adsorption capacities of this magnetic nanocomposite for 2,6-dichlorophenol and p-nitrophenol were a little bit decreased, which were 170 mg/g and 91 mg/g, respectively. However, the magnetic nanocomposite can be separated within 30 s under an external magnetic field, which would be useful in the practical application.

섬유상활성탄소를 이용한 Humic Acid 공존시 페놀의 흡착특성에 관한 연구 (A Study on the Adsorption Characteristics of Phenol in the presence of Humic Acid Using Activated Carbon Fiber)

  • 탁성제;서성원;김성순;김진만
    • 상하수도학회지
    • /
    • 제14권1호
    • /
    • pp.54-61
    • /
    • 2000
  • Recently, our circumstances are threatened by an accident that leakage of under ground storage tank and illegal dumping of synthetic organic compounds at chemical plants and many treatment methods, Activated carbon adsorption, Ozonization, Membrane filtration and Photocatalystic oxidation, are developed to remove such a synthetic organic compounds. And it has reported that Activated carbon adsorption have a great removal efficiency to nondegradable matters and organic compounds which have a high molecular weight. Comparing with other adsorbents, Activated carbon adsorption have a worse efficiency when ad desorption speed is low. Thus improved type of adsorbents was invented and one of those is Activated Carbon Filter. The purpose of this study was getting information about adsorption characteristic phenol which can be applied Activated Carbon Fiber and Granular Activated Carbon. In detail, With comparing removal characteristics of phenol in the presence Humic Acid using Activated Carbon Fiber(ACF) and Granular Activated. Carbon(GAC), it is to certify an effective application of Activated Carbon Fiber. At the range of this study, Batch test, Isotherm adsorption test and Factorial analysis, following conclusion were obtained from the results of this study. Batch test was carried to know time of adsorption equilibrium. In this study about time of adsorption equilibrium by ACF was faster than GAC's, for developed micropore of ACF. From the result of phenol adsorption test, High removal rate of adsorption is shown at pH 5. The result of lsotherm adsorption test, it has represented that the Freundlich's isotherm is most suitable one in others, that a ACF's adsorption capacity is more excellent than GAC's. Adsorption of phenol exiting humic acid is decreased getting raised humic acid concentration. Since ACF's micropore is developed at this time, an effect of high molecular humic acid is lower. Factorial analysis was carried to know about Main effect which was injection dosage of adsorbent in the range of this study.

  • PDF

모델 Microspheres의 합성 및 Bovine Albumin의 흡착 (Synthesis of Model Microspheres and Adsorption Study of Bovine Albumin)

  • 박영준;윤정열
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권3호
    • /
    • pp.209-220
    • /
    • 1993
  • Microspheres are expected to be applied to biomedical areas such as solid-phase immunoassays, drug delivery systems, Immunomagnetic cell separation. To synthesize micro-spheres for biomedical application, "two stage shot growth method" was developed. The uniformity ratio or synthesized microspheres was always smatter than 1.05. And the surface charge density (or the number of ionizable functional groups) of the microspheres synthesized by "two stage shot growth method" was 6-13 times higher than thats of the ml crospheres synthesized by conventional seeded batch copolymerization. As a previous step for biomedical application, adsorption experiments of bovine albumin on microspheres were carried out under various conditions. The maximum adsorbed amount was obtained in the neighborhood of pH 4.5. Isoelectric point of bovine albumin Is pH 5.0, so experimental result shows that it shifted to acid area. The adsorption Isotherm was obtained, the plateau region was always reached at 2.Og/L (bulk concentration of bovine albumin ) . The effect of the kind and the amount of surface functional group was also examined.p was also examined.

  • PDF