DOI QR코드

DOI QR Code

Photocatalytic and Adsorption Properties of WO3 Nanorods Prepared by Hydrothermal Synthesis

수열합성법으로 제조된 나노막대 구조 WO3의 광촉매 효과 및 염료 흡착 반응

  • Yu, Su-Yeol (Department of Applied Physics, Hannam University) ;
  • Nam, Chunghee (Department of Applied Physics, Hannam University)
  • 유수열 (한남대학교 광.전자물리학과) ;
  • 남충희 (한남대학교 광.전자물리학과)
  • Received : 2017.12.07
  • Accepted : 2017.12.26
  • Published : 2017.12.28

Abstract

Transition-metal oxide semiconductors have various band gaps. Therefore, many studies have been conducted in various application fields. Among these, methods for the adsorption of organic dyes and utilization of photocatalytic properties have been developed using various metal oxides. In this study, the adsorption and photocatalytic effects of $WO_3$ nanomaterials prepared by hydrothermal synthesis are investigated, with citric acid added in the hydrothermal process as a structure-directing agent. The nanostructures of $WO_3$ are studied using transmission electron microscopy and scanning electron microscopy images. The crystal structure is investigated using X-ray diffraction patterns, and the changes in the dye concentrations adsorbed on $WO_3$ nanorods are measured with a UV-visible absorption spectrophotometer based on Beer-Lambert's law. The methylene blue (MB) dye solution is subjected to acid or base conditions to monitor the change in the maximum adsorption amount in relation to the pH. The maximum adsorption capacity is observed at pH 3. In addition to the dye adsorption, UV irradiation is carried out to investigate the decomposition of the MB dye as a result of photocatalytic effects. Significant photocatalytic properties are observed and compared with the adsorption effects for dye removal.

Keywords

References

  1. P. Basnet and Y. Zhao: J. Mater. Chem. A, 2 (2014) 911. https://doi.org/10.1039/C3TA14000H
  2. K. Teramura, T. Tanaka, M. Kani, T. Hosokawa, and T. Funabiki: J. Mol. Catal. A, 208 (2004) 299. https://doi.org/10.1016/S1381-1169(03)00544-2
  3. Z. G. Zhao and M. Miyauchi: Angew. Chem. Int. Ed., 47 (2008) 7051. https://doi.org/10.1002/anie.200802207
  4. T. Arai, M. Yanagida, Y. Konishi, A. Ikura, Y. Iwasaki, H. Sugihara and K. Sayama: Appl. Catal., 84 (2008) 42. https://doi.org/10.1016/j.apcatb.2008.03.002
  5. D. S. Bohle and C. J. Spina: J. Am. Chem. Soc., 131 (2009) 4397. https://doi.org/10.1021/ja808663b
  6. K. Tang, J. Zhang, W. Yan, Z. Li, Y. Wang, W. Yang, Z. Xie, T. Sun and H. Fuchs: J. Am. Chem. Soc., 130 (2008) 2676. https://doi.org/10.1021/ja0778702
  7. H. Choi, H. Ryu and W. J. Lee: Korean J. Met. Mater., 55 (2017) 46. https://doi.org/10.3365/KJMM.2017.55.1.46
  8. Z. Liu, M. Masashio and Y. Toshinari: Sens. Actuators B Chem., 140 (2009) 514. https://doi.org/10.1016/j.snb.2009.04.059
  9. H. Jung, C. Sunwoo and D. H. Kim: Korean Chem. Eng. Res., 49 (2011) 405. https://doi.org/10.9713/kcer.2011.49.4.405
  10. H. Zheng, Y. Tachibana and K. Kalantar-zadeh: Langmuir, 26 (2010) 19148. https://doi.org/10.1021/la103692y
  11. E. O. Zayim, P. Liu, S. H. Lee, C. Edwin Tracy, J. A. Turner, J. R. Pitts and S. K. Deb: Solid State Ion., 165 (2003) 65. https://doi.org/10.1016/j.ssi.2003.08.014
  12. S. Gubbala, J. Thangala and M. K. Sunkara: Sol. Energy Mater. Sol. Cells., 91 (2007) 813. https://doi.org/10.1016/j.solmat.2007.01.016
  13. S. Lee, H. Cha and Y. C. Nah: J. Korean Powder Metall. Inst., 22 (2015) 326. https://doi.org/10.4150/KPMI.2015.22.5.326
  14. C. N. R. Rao, F. L. Deepak, G. Gundiah and A. Govindaraj: Prog. Solid State Chem., 31 (2003) 5. https://doi.org/10.1016/j.progsolidstchem.2003.08.001
  15. S. M. Park, Y. C. Nah and C. Nam: J. Nanosci. Nanotechnol., 17 (2017) 7719. https://doi.org/10.1166/jnn.2017.14824
  16. J. Wang, E. Khoo, P. S. Lee and J. Ma: J. Phys. Chem. C, 113 (2009) 9655. https://doi.org/10.1021/jp901650v
  17. L. Chen, S. Lam, Q. Zeng, R. Amal and A. Yu: J. Phys. Chem. C, 116 (2012) 11722. https://doi.org/10.1021/jp301210q
  18. J. R. G. Navarro, A. Mayence, J. Andrade, F. Lerouge, F. Chaput, P. Oleynikov and L. Bergstrom: Langmuir, 30 (2014) 10487. https://doi.org/10.1021/la5025907
  19. J. Y. Luo, Y. R. Lin, B. W. Liang, Y. D. Li, X. W. Mo and Q. G. Zeng: RSC Adv., 5 (2015) 100898. https://doi.org/10.1039/C5RA18601C

Cited by

  1. Photocatalysis of TiO<sub>2</sub>/WO<sub>3</sub> Composites Synthesized by Ball Milling vol.25, pp.4, 2018, https://doi.org/10.4150/KPMI.2018.25.4.316