• 제목/요약/키워드: adsorbed oxygen

검색결과 155건 처리시간 0.024초

산화아연에서의 CO, $C_2H_4$의 산화반응 (Oxidation Reaction of CO and $C_2H_4$ on Zinc Oxide)

  • 한종수;전학제
    • 대한화학회지
    • /
    • 제24권3호
    • /
    • pp.218-224
    • /
    • 1980
  • 산화아연에 흡착한 산소종과 CO, $C_2H_4$의 표면반응을 EPR 분광법을 사용하여 연구했다. (1) $25^{\circ}$, $100^{\circ}$, $200^{\circ}$, $300^{\circ}C$등 여러온도에서 산소가 흡착된 산화아연의 EPR 스펙트럼을 비교하여 g = 2.014의 피이크가 산소결합에 trap된 $O^-$에서 나옴을 알았다. (2) 각 온도에서 산소가 흡착된 산화아연을 CO, $C_2H_4$와 접촉시켜 흡착종의 반응성을 알아보았으며, 안정한 $O_2^-$의 EPR스펙트럼을 이용하여 탈착된 표면을 검출했다. (3) 비교적 높은 온도에서 존재하는 $O^-$$25^{\circ}C$에서도 CO, $C_2H_4$와 반응하여 완전산화반응을 하며 생성된 흡착종들은 $200^{\circ}C$에서 탈착되었다. (4) $180^{\circ}C$까지 주로 존재하는 $O_2^-$는 CO의 반응하지 않았고 $C_2H_4$와 반응하여 $200^{\circ}C$에서 탈착되는 g=2.002의 등방성 EPR 스펙트럼을 갖는 생성물을 만들었다.

  • PDF

페로브스카이트 촉매에서 A-Site 치환에 따른 촉매활성 변화 (Catalytic Activity Change of Perovskite Catalysts with A-Site Substitution)

  • 함현식;김규성;안성환;신기석;김송형;박홍수
    • 한국응용과학기술학회지
    • /
    • 제24권3호
    • /
    • pp.272-277
    • /
    • 2007
  • Catalytic activity changes of perovskite catalysts were examined with their A-site substitution. For the preparation of catalysts, Mn was used for B-site component and La, Ce, Sr, Ba, Ca, Ag were used for A-site component of the perovskite $catalysts(ABO_3)$ The effect of calcination temperature on methane combustion and perovskite structure was also investigated. The surface area and adsorbed oxygen species were tested with BET apparatus and $O_2-TPD$, respectively. Perovskite catalysts whose A-site was partially substituted needed higher calcination temperature than un-substituted one to form the perovskite structure. From $O_2-TPD$ experiment, it was found that methane combustion activity was directly related to the oxygen desorbing ability of the catalysts. The prepared catalyst(LM-7) was stable at $600^{\circ}C$ for 72 hours of reaction.

Rayon계 ACF의 표면 산소관능기 도입과 Primary amine의 흡착 거동 (Adsorption Behavior of Primary amine on Activated carbon Rayon-fiber Surfaces as Induced by Oxygen Functional Complexes)

  • 김병구;신해근;서정규;이문용;지상운
    • 한국연초학회지
    • /
    • 제31권1호
    • /
    • pp.9-17
    • /
    • 2009
  • Activated carbon fiber (ACF) was surface modified by nitric acid to improve the adsorption efficiency of the propylamine. Functional groups and textural properties of modified ACF were investigated. The total surface acidity increased about 7 times to that of as-received ACF by modification with 1 M nitric acid solution, carboxylic and phenolic groups mainly increased. However, the specific surface areas and the total pore volumes of the modified ACFs were decreased by 5-8% due to the increased blocking (or demolition) of micropores in the presence of newly introduced complexes. Despite the decrease of textural properties, it was found that the amount of propylamine adsorbed by the modified ACFs was increased by approximately 17%. The oxygen and nitrogen contents on the modified ACF increased by 1.5 and 3 times compared with the as-received ACF. From the XPS results, it was observed that propylamine reacted with strong or weak acidic groups, such as -COOH or -OH on the ACF surfaces, resulting in the formation of pyrrolic-, pyridonic- or pyridine-like structures.

Electronic structure and catalytic reactivity of model oxide catalysts

  • 김유권
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.35-35
    • /
    • 2010
  • Understanding the mechanistic details of heterogeneous catalytic reactions will provide a way to tune the selectivity between various competing reaction channels. In this regard, catalytic decomposition of alcohols over the rutile $TiO_2$(110) surface as a model oxide catalyst has been studied to understand the reaction mechanism employing the temperature-programmed desorption (TPD) technique. The $TiO_2$(110) model catalyst is found to be active toward alcohol dehydration. We find that the active sites are bridge-bonded oxygen vacancies where RO-H heterolytically dissociates and binds to the vacancy to produce alkoxy (RO-) and hydroxyl (HO-). Two protons adsorbed onto the bridge-bonded oxygen atoms (-OH) readily react with each other to form a water molecule at ~500 K and desorb from the surface. The alkoxy (RO-) undergoes decomposition at higher temperatures into the corresponding alkene. Here, the overall desorption kinetics is limited by a first-order decomposition of intermediate alkoxy (RO-) species bound to the vacancy. We show that detailed analysis on the yield and the desorption temperatures as a function of the alkyl substituents provides valuable insights into the reaction mechanism. After the catalytic role of the oxygen vacancies has been established, we employed x-ray photoelectron spectroscopy to further study the surface electronic structure related to the catalytically active defective sites. The defect-related state in valence band has been related to the chemically reduced $Ti^{3+}$ defects near the surface region and are found to be closely related to the catalytic activity of the $TiO_2$(110) surface.

  • PDF

Active Reaction Sites and Oxygen Reduction Kinetics on $La_1_{-x}Sr_xMnO_{3+\delta}$(x=0.1-0.4)/YSZ (Yttria-Stabilized Zirconia) Electrodes for Solid Oxide Fuel Cells

  • Lee, Hee Y.;Cho, Woo S.;오승모
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권6호
    • /
    • pp.661-666
    • /
    • 1998
  • Active reaction sites and electrochemical O2 reduction kinetics on La_{1-x}Sr_xMnO_{3+{\delta}} (x=0.1-0.4)/YSZ (yttria-stabilized zirconia) electrodes are investigated in the temperature range of 700-900 ℃ at $Po_2=10^{-3}$-0.21 atm. Results of the steady-state polarization measurements, which are formulated into the Butler-Volmer formalism to extract transfer coefficient values, lead us to conclude that the two-electron charge transfer step to atomically adsorbed oxygen is rate-limiting. The same conclusion is drawn from the $Po_2$-dependent ac impedance measurements, where the exponent m in the relationship of $I_o$ (exchange current density) ∝ $P_{o_{2}}^m$ is analyzed. Chemical analysis is performed on the quenched Mn perovskites to estimate their oxygen stoichiometry factors (δ) at the operating temperature (700-900 ℃). Here, the observed δ turns out to become smaller as both the Sr-doping contents (x) and the measured temperature increase. A comparison between the 8 values and cathodic activity of Mn perovskites reveals that the cathodic transfer coefficients $({\alpha}_c)$ for oxygen reduction reaction are inversely proportional to δ whereas the anodic ones $({\alpha}_a)$ show the opposite trend, reflecting that the surface oxygen vacancies on Mn perovskites actively participate in the $O_2$ reduction reaction. Among the samples of x= 0.1-0.4, the manganite with x=0.4 exhibits the smallest 8 value (even negative), and consistently this electrode shows the highest ${\alpha}_c$ and the best cathodic activity for the oxygen reduction reaction.

Changes in Phosphorus and Sediment Oxygen Demand in Coastal Sediments Promoted by Functionalized Oyster Shell Powder as an Oxygen Release Compound

  • Kim, Beom-geun;Khirul, Md Akhte;Cho, Dae-chul;Kwon, Sung-Hyun
    • 한국환경과학회지
    • /
    • 제28권10호
    • /
    • pp.851-861
    • /
    • 2019
  • In this study, we performed a sediment elution experiment to evaluate water quality in terms of phosphorus, as influenced by the dissolved oxygen consumed by sediments. Three separate model column treatments, namely, raw, calcined, and sonicated oyster shell powders, were used in this experiment. Essential phosphorus fractions were examined to verify their roles in nutrient release from sediment based on correlation analyses. When treated with calcined or sonicated oyster shell powder, the sediment-water interface became "less anaerobic," thereby producing conditions conducive to partial oxidation and activities of aerobic bacteria. Sediment Oxygen Demand (SOD) was found to be closely correlated with the growth of algae, which confirmed an intermittent input of organic biomass at the sediment surface. SOD was positively correlated with exchangeable and loosely adsorbed phosphorus and organic phosphorus, owing to the accumulation of unbound algal biomass-derived phosphates in sediment, whereas it was negatively correlated with ferric iron-bound phosphorus or calcium fluorapatite-bound phosphorus, which were present in the form of "insoluble" complexes, thereby facilitating the free migration of sulfate-reducing bacteria or limiting the release from complexes, depending on applied local conditions. PCR-denaturing gradient gel electrophoresis revealed that iron-reducing bacteria were the dominant species in control and non-calcined oyster shell columns, whereas certain sulfur-oxidizing bacteria were identified in the column treated with calcined oyster powder.

Removal of Toxic Pollutants from Aqueous Solutions by Adsorption onto Organo-kaolin

  • Sayed Ahmed, S.A.
    • Carbon letters
    • /
    • 제10권4호
    • /
    • pp.305-313
    • /
    • 2009
  • In this study, the adsorption of toxic pollutants onto cetyltrimethylammonium kaolin (CTAB-Kaolin) is investigated. The organo-kaolin is synthesized by exchanging cetyltrimethylammonium cations (CTAB) with inorganic ions on the surface of kaolin. The chemical analysis, the structural and textural properties of kaolin and CTAB-kaolin were investigated using elemental analysis, FTIR, SEM and adsorption of nitrogen at $-196^{\circ}C$. The kinetic adsorption and adsorption capacity of the organo-kaolin towards o-xylene, phenol and Cu(II) ion from aqueous solution was investigated. The kinetic adsorption data of o-xylene, phenol and Cu(II) are in agreement with a second order model. The equilibrium adsorption data were found to fit Langmuir equation. The uptake of o-xylene and phenol from their aqueous solution by kaolin, CTAB-kaolin and activated carbon proceed via physisorption. The removal of Cu(II) ion from water depends on the surface properties of the adsorbent. Onto kaolin, the Cu(II) ions are adsorbed through cation exchange with $Na^+$. For CTAB-kaolin, Cu(II) ions are mainly adsorbed via electrostatic attraction with the counter ions in the electric double layer ($Br^-$), via ion pairing, Cu(II) ions removal by the activated carbon is probably related to the carbon-oxygen groups particularly those of acid type. The adsorption capacities of CTAB-kaolin for the investigated adsorbates are considerably higher compared with those of unmodified kaolin. However, the adsorption capacities of the activated carbons are by far higher than those determined for CTAB-kaolin.

산화아연에서의 $C_3H_6$의 산화반응 (Oxidation Reaction of $C_3H_6$ on Zinc Oxide)

  • 전학제;한종수
    • 대한화학회지
    • /
    • 제25권2호
    • /
    • pp.92-96
    • /
    • 1981
  • 산화아연에서 흡착산소종과 프로필렌의 상호작용을 EPR과 TPD를 사용 연구했다. 흡착산소종 $O_2^-$$25^{\circ}C$에서 프로필렌과 작용, g=1.96의 반응중간체를 생성했는데 이는 $200^{\circ}C$이상에서 $H_2$, CO와 $CO_2$, $CH_4$등으로 분해되었다. 흡착산소종 $O^-$는 프로필렌과 상호작용, g=2.008의 중간체 및 완전산화물인 $CO_2$, $H_2O$ 등을 생성했다.

  • PDF

입자상 활성탄의 흡착과 재생에 의한 PCBs 오염제거 (Decontamination of PCBs by Hybrid Adsorption/Regeneration on Granular Activated Carbon)

  • 홍용표;최종하
    • 대한화학회지
    • /
    • 제46권2호
    • /
    • pp.117-124
    • /
    • 2002
  • 활성탄에 흡착되어 있는 유기질을 처리하기 위하여 역류산화반응이 개발되었고 그것에 대한 평가가 이루어 졌다. 역류산화반응이란 산소의 흐름과 반대로 이동하는 자발적인 불꽃을 이용하여 유기질을 파괴 및 제거함과 동시에 폐활성탄을 재생하는 방법이다. 본 연구를 통하여 얻어진 실험결과를 고찰해 보면, 활성탄의 질량손실과 불꽃의 온도가 산소의 흐름속도에 절대적으로 의존하였고, 재생탄의 비표면적이 거의 완전히 회복되었으며, 특히 활성탄에 흡착되어 있는 열에 안정한 PCBs를 거의 완전히 파괴 및 제거(99.99%이상)할 수 있었다.

산소 플라즈마 처리된 활성탄소의 세슘 이온 흡착 (Cesium Ions Adsorption of Activated Carbon Treated by Oxygen Plasma)

  • 하성민;곽철환;임채훈;김석진;이영석
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.38-43
    • /
    • 2022
  • 산소 플라즈마 처리에 따른 활성탄소의 산소 관능기 도입이 세슘 이온 흡착 특성에 미치는 영향에 대하여 고찰하였다. 산소 플라즈마 처리 시 주파수, 전력 및 산소 가스 유량은 각각 100 kHz, 80 W 및 60 sccm으로 고정하였으며, 반응시간을 변수로 수행하였다. 본 실험조건에서는 산소 가스와의 반응시간이 10분일 때 C-O-C 및 O=C-O 결합 내 산소 기능기 함량이 증가함에 따라 세슘 이온 흡착량이 증가하였다. 그러나 반응 시간이 15분일 때 산소 관능기 함량이 감소하게 되어 세슘 이온 흡착량이 오히려 감소되었다. 한편, 표면 처리된 활성탄소의 산소 함량과는 달리 그 비표면적 및 기공 특성은 산소 플라즈마 반응 시간에 따라 거의 영향을 받지 않았다. 결과적으로 산소 플라즈마 처리된 활성탄소는 미처리 활성탄소에 비하여 세슘 이온 제거율이 최대 97.3%까지 향상되었다. 이는 산소 플라즈마 처리로 활성탄소 표면에 도입된 C-O-C 및 O=C-O 결합 내 산소 기능기의 함량에 기인한 것으로 판단된다.