DOI QR코드

DOI QR Code

Active Reaction Sites and Oxygen Reduction Kinetics on $La_1_{-x}Sr_xMnO_{3+\delta}$(x=0.1-0.4)/YSZ (Yttria-Stabilized Zirconia) Electrodes for Solid Oxide Fuel Cells


Abstract

Active reaction sites and electrochemical O2 reduction kinetics on La_{1-x}Sr_xMnO_{3+{\delta}} (x=0.1-0.4)/YSZ (yttria-stabilized zirconia) electrodes are investigated in the temperature range of 700-900 ℃ at $Po_2=10^{-3}$-0.21 atm. Results of the steady-state polarization measurements, which are formulated into the Butler-Volmer formalism to extract transfer coefficient values, lead us to conclude that the two-electron charge transfer step to atomically adsorbed oxygen is rate-limiting. The same conclusion is drawn from the $Po_2$-dependent ac impedance measurements, where the exponent m in the relationship of $I_o$ (exchange current density) ∝ $P_{o_{2}}^m$ is analyzed. Chemical analysis is performed on the quenched Mn perovskites to estimate their oxygen stoichiometry factors (δ) at the operating temperature (700-900 ℃). Here, the observed δ turns out to become smaller as both the Sr-doping contents (x) and the measured temperature increase. A comparison between the 8 values and cathodic activity of Mn perovskites reveals that the cathodic transfer coefficients $({\alpha}_c)$ for oxygen reduction reaction are inversely proportional to δ whereas the anodic ones $({\alpha}_a)$ show the opposite trend, reflecting that the surface oxygen vacancies on Mn perovskites actively participate in the $O_2$ reduction reaction. Among the samples of x= 0.1-0.4, the manganite with x=0.4 exhibits the smallest 8 value (even negative), and consistently this electrode shows the highest ${\alpha}_c$ and the best cathodic activity for the oxygen reduction reaction.

Keywords

References

  1. Fuel Cell Systems Murugesmoorthi, K. A.;Srinivasan, S.;Appleby, A. J.;Blomen, L. J. M. J.(ed.);Mugerwa, M. N.(ed.)
  2. Advances in Electrochmical Science and Engineering Hammou, A.;Gerischer, H.(ed.);Tobias, C. W.(ed.)
  3. J. Electrochem. Soc. v.134 Takeda, Y.;kanno, R.;Noda, M.;Tomida, Y.;Yammamoto, O.
  4. J. Elecrochem. Soc. v.138 Mizusaki, J.;Tagawa, H.;Tsuneyoshi, K.;Sawata, A.
  5. J. Electrochem. Soc. v.138 de Haart, L. G. J.;Kuipers. R. A.;de Vries, K. J.;Burggraaf, A. J.
  6. Mater. Res. Bull. v.24 Hammouche, A.;siebert, E.;Hammou, A.
  7. J. Electrochem. Soc. v.138 Hammouche, A.;siebert, E.;Hammou, A.;Kleitz, M.;Caneiro, A.
  8. J. Electrochem. Soc. v.142 Lee, H. Y.;Cho, W. S.;Oh, S. M.;Wiemhofer, H-D.;Gopel. W.
  9. J. Electrochem. Soc. v.137 Inoue, T.;Seki, N.;Eguchi, K.;Arai, H.
  10. Modern Electrochemistry v.2 O'M Bockris, J.;Reddy, A. K. N.
  11. Vogel's Texbook of Quantitative Chemical Analysis Jeffery, G. H.;Bassett, J.;Mendhan, J.;Denney, R. C.
  12. J. Solid State Ionics v.48 Van Hassel, B. A.;Boukamp, B. A.;Burggraaf, A. J.
  13. Impedance spectroscopy emphasizing Solid maters and systems Macdonald, J. R.
  14. Solid State Ionis v.90 Lee, H. Y.;Oh, S. M.
  15. Solid State Ionics v.40 no.41 Yofstad, H.;Sakai, N.;Kawada, T.;Dokiya, M.
  16. High Temperature Electrochemical Behavior of Fast Ion and Mixed Conductors Kofstad, P.;Petrov, A.
  17. J. Sold State Chem. v.83 Kuo, J. H.;Anderson, H. U.;Sparlin, D. M.