• Title/Summary/Keyword: adjustable speed control

Search Result 108, Processing Time 0.035 seconds

Effect of Adjustable Speed Pumped Storage Power Generator on the Frequency Control Against the Intermittence of Wind Turbine Output (풍력발전기 출력변동성에 대비한 가변속 양수발전기의 주파수 제어효과)

  • Park, Min-Su;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.338-342
    • /
    • 2014
  • Energy storage is a key issue when integrating large amounts of intermittent and non-dispatchable renewable energy sources into electric power systems. To maintain the instantaneous power balance and to compensate for the influence of power fluctuations from renewable sources, flexible capability for power control is needed. Adjustable Speed Pumped Storage Power Generator is pumped storage unit that is adjustable for pump output adjustments as well as the highest efficiency operations because it has fast response time. In this paper we address the adjustable speed pumped storage power generator for frequency control against the intermittence of wind turbine output and calculate the appropriate capacity of adjustable speed pumped storage power generator.

Analysis of Harmonics generated at Load of Adjustable Speed Drives (가변속 구동장치의 부하측에서 발생하는 고조파 해석)

  • Kim, Jong-Gyeum;Lee, Eun-Woong;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.46-48
    • /
    • 1997
  • Induction motor control using for adjustable speed drives has caused secondary effect such as harmonics. Therefore it is considered a various countermeasures to minimize these effects. In this paper, we analyzed the influence of harmonics that is generated by the inverter device for adjustable speed drive of induction motor at the load side.

  • PDF

A Study on International Standards Related to Adjustable Speed DC Drive Systems (가변속 직류구동시스템 관련 국제규격에 관한 연구)

  • Hong Soon-Chan;Kim Kyung-Won
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.223-226
    • /
    • 2002
  • This paper studies the scope and text summary of international standards related to adjustable speed d.c. drive systems, especially IEC 61800-1 and IEC 61136-1. IEC 61800-1 applies to general purpose adjustable speed d.c. drive systems which include the power conversion, control equipment, and also a motor or motors. This standard applies to power drive systems connected to line voltages up to 1kV a.c., 50Hz or 60Hz. IEC 61136-1 provides alternative methods for specifying ratings for semiconductor power convertors for adjustable speed electric drive systems, particularly for d.c. motor drives.

  • PDF

Speed Sensorless Control of an Induction Motor using Fuzzy Speed Estimator (퍼지 속도 추정기를 이용한 유도전동기 속도 센서리스 제어)

  • Choi, Sung-Dae;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.183-187
    • /
    • 2007
  • This paper proposes Fuzzy Speed Estimator using Fuzzy Logic Controller(FLC) as a adaptive law in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. Fuzzy Speed Estimator estimates the speed of an induction motor with a rotor flux of the reference model and the adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error of the rotor flux as the input of FLC. The experiment is executed to verify the propriety and the effectiveness of the proposed speed estimator.

Adjustable Speed Control of Stand-Alone Wind Power Generation System using Squirrel-Cage Induction Generators (농형유도발전기를 이용한 독립형 풍력발전시스템의 가변속 제어)

  • Kim, Hyeung-Kyun;Lee, Kang-Ju;Lee, Dong-Choon;Seok, Jul-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.338-340
    • /
    • 2003
  • This paper proposes a stand-alone adjustable speed wind Power generation system using a cage-type induction generator. Indirect vector control is used, where the q-axis current controls the generator speed and the d-axis current controls the excitation level. The generator speed is adjusted according to the wind speed so as to produce the maximum output power. The generated power is charged in the battery bank through ac/dc PWM converter. The proposed scheme has been verified by the experimental results.

  • PDF

A Study on EMC Product Standard Including Specific Test Methods Related to Adjustable Speed Electrical Power Drive Systems (가변속 전력구동시스템 관련 특수 시험방법을 포함한 EMC 제품규격에 관한 연구)

  • Hong Soon-Chan;Seo Young-Min;Kim Kyung-Won
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.99-103
    • /
    • 2002
  • IEC 61800 is an international standard on adjustable speed electrical power drive systems, which consists of three parts. IEC 61800-1 and IEC 61800-2 apply to DC power drive systems and AC power drive systems, respectively, which include power conversion, control equipment, and also a motor or motors. IEC 61800-3 specifies EMC ( Electro Magnetic Compatibility ) requirements for adjustable speed AC or DC motor drives connected to main supplies up to AC 1,000 volts. This paper studies the standards related to EMC and the text summary of international standard IEC 61800-3 which is an EMC product standard including specific test methods.

  • PDF

Speed-Sensorless Control of an Induction Motor using Model Reference Adaptive Fuzzy System (기준 모델 적응 퍼지 시스템을 이용한 유도전동기의 속도 센서리스 제어)

  • Choi, Sung-Dae;Kang, Sung-Ho;Ko, Bong-Woon;Nam, Hoon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2064-2066
    • /
    • 2002
  • This paper proposes Model Reference Adaptive Fuzzy System(MRAFS) using Fuzzy Logic Controller(FLC) as a adaptive laws in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. MRAFS estimates the speed of an induction motor with a rotor flux of a reference model and adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error as the input of FLC. The computer simulation is executed to verify the propriety and the effectiveness of the proposed system.

  • PDF

3-Phase SR Drive System (범용 3상 SR Drive System)

  • Kim T.H.;Ahn J.W.;Park H.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.856-859
    • /
    • 2003
  • The switched reluctance motor(SRM) drive system provides a good adjustable speed and torque characteristics. However, because of the torque production mechanism, it also has some disadvantage such as higher torque ripple and fluctuation in speed. To reduce torque ripple and to control speed precisely, digital signal processor(BSP) is adopted. The DSP TMS320F241 was used to be realized this drive system. Test results show that the suggested control system has the ability of dynamic and precise speed control.

  • PDF

A Study on the Current-diagram Method for Calculating Induction Motor Characteristics with Adjustable Frequency (가변주파수에 있어서 유도전동기의 특성도식 산정법에 관해서 제1보)

  • Min-Ho Park
    • 전기의세계
    • /
    • v.17 no.3
    • /
    • pp.29-38
    • /
    • 1968
  • The development of the frequency converter using semiconductor enables to easily control the speed of A.C. motors. It is now technically possible and economically feasible to provide them with power at variable frequency, using silicon-controlled-rectifier (or thyristor) inverters. In such a case, if an induction motor is to be operated efficiently over a wide speed range, it must be supplied from a variable-frequency source whose frequency is adjustable over a range similar to that required for the motor speed. It is desired to observe how several characteristics are changed such as primary current, torque-speed, etc. Although the characteristics could be obtained by means of the conventional method, it requires very complicated calculation. It is assumed that the charateristics above are easily investigated by means of current diagram method from variable circuit constants relating to the motor which is designed in rated frequency. In this paper, the results of the study on the current-diagram method and its application are described as follows; (1) In order to discuss the construction of current diagram, the equation of the stator current with adjustable frequency was derived for applying the Current Diagram Method. (2) The radius, the center of the current circle and current vector locus at any desired frequency could be easily determined with the aid of both above mentioned equation and the standard current diagram at reference frequency. (3) This method could be applicable to the various types of Induction Motors, and this paper has dealt with its application to the capacitor, split-phase and 2-phase types of motors.

  • PDF

A Study of the Current-Diagram Method for Calculating Induction Motor Characteristics with Adjustable Frequency (가변주파수에 있어서 유도잔동기특성의 도식산정법에 관한 연구 제3보)

  • Min Ho Park
    • 전기의세계
    • /
    • v.18 no.5
    • /
    • pp.20-25
    • /
    • 1969
  • The development of the frequency convertors using semiconductors devices makes it possible to control the speed of A.C. motors easily. It is now economically feasible to provide them with power at adjustable frequency using silicon-controlled rectifier (or thyristor) inverters. In such a case, in order to operate an induction motor efficiently over a wide speed range, it must be supplied from a variable frequency source of which frequency is adjustable over the speed range of the motor. It is desired to observe the changes in characteristics as primary current, torque-speed of induction motor etc. at any optional frequency. Although the characteristics can be obtained by means of the conventional methods, they require very complicated precedures of calculations. The Current Diagram Method in this paper suggests a new approach to simpler calculations of the characteristics, using the motor constants at reference frequency. The conclusions of this study are summarized as follows: 1) The equations of stator current at adjusted frequency were derived to construct graphical chart and the current circle required for the Current Diagram Method. 2) The radius, center of the current circle and the vector locus, the basis for calculating the characteristics, at any desired frequency could be easily determined with the aid of both the derived graphical chart and current circle at reference frequency. 3) The method was shown to be applicable to the various types of 3-phase induction motors and also dealt with its application to the split-phase, condenser motors.

  • PDF