• Title/Summary/Keyword: additive noise

Search Result 626, Processing Time 0.026 seconds

Deep Learning based Frame Synchronization Using Convolutional Neural Network (합성곱 신경망을 이용한 딥러닝 기반의 프레임 동기 기법)

  • Lee, Eui-Soo;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.501-507
    • /
    • 2020
  • This paper proposes a new frame synchronization technique based on convolutional neural network (CNN). The conventional frame synchronizers usually find the matching instance through correlation between the received signal and the preamble. The proposed method converts the 1-dimensional correlator ouput into a 2-dimensional matrix. The 2-dimensional matrix is input to a convolutional neural network, and the convolutional neural network finds the frame arrival time. Specifically, in additive white gaussian noise (AWGN) environments, the received signals are generated with random arrival times and they are used for training data of the CNN. Through computer simulation, the false detection probabilities in various signal-to-noise ratios are investigated and compared between the proposed CNN-based technique and the conventional one. According to the results, the proposed technique shows 2dB better performance than the conventional method.

A Performance Evaluation of mSE-MMA Adaptive Equalization Algorithm in QAM Signal (QAM 신호에서 mSE-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.95-100
    • /
    • 2020
  • This paper related with the performance evaluation of mSE-MMA (modified Signed Error-Multi Modulus Algorithm) adaptive equalization algorithm which is possible to reduce the distortion that is occurs in nonlinear communication channel like as additive noise, intersymbol interference and fading. The SE-MMA algorithm are emerged in order to reducing the computational load compared to the presently MMA algorithm, it has the degraded equalization performance by this. In order to improve the performance degradation of SE-MMA, the mSE-MMA controls the step size according to the existence of arbitrary radius circle of equalizer output is centered at transmitted symbol point. The performance of proposed mSE-MMA algorithm were compared to present SE-MMA using the same channel and noise environment by computer simulation. For this, the recoverd signal constellation which is the output of equalizer, residual isi and MD (Maximum Distortion), MSE learning curve which is represents the convergence performance and SER which is represents the roburstness of noise were used as performance index. As a result of simulation, the mSE-MMA has more superior to the SE-MMA in every performance index, and was confirmed that mSE-MMA has roburstness to the noise in the SER performance than SE-MMA especially.

Asymptotic Performance of ML Sequence Estimator Using an Array of Antennas for Coded Synchronous Multiuser DS-CDMA Systems

  • Kim, Sang G.;Byung K. Yi;Raymond Pickholtz
    • Journal of Communications and Networks
    • /
    • v.1 no.3
    • /
    • pp.182-188
    • /
    • 1999
  • The optimal joint maximum-likelihood sequence estima-for using an array of antennas is derived for synchronous direct sequence-code division multiple access (DS-CDMA) system. Each user employs a rate 1/n convolutional code for channel coding for the additive white Gaussian noise (AWGN) channel. The array re-ceiver structure is composed of beamformers in the users' direc-tions followed by a bank of matched filters. The decoder is imple-mented using a Viterbi algorithm whose states depend on the num-ber of users and the constraint length of the convolutional code. The asymptotic array multiuser coding gain(AAMCG)is defined to encompass the asymptotic multiuser coding gain and the spatial information on users' locations in the system. We derive the upper and lower bounds of the AAMCG. As an example, the upper and lower bounds of AAMCG are obtained for the two user case where each user employes the maximum free distance convolutional code with rate 1/2. The enar-far resistance property is also investigated considering the number of antenna elements and user separations in the space.

  • PDF

SER Analysis of Arbitrary Two-Dimensional Signaling over Nonlinear AWGN Channels (비선형 채널에서 임의의 2차원 변조 신호의 SER 분석)

  • Lee, Jae-Yoon;Yoon, Dong-Weon;Cho, Kyong-Kuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.738-745
    • /
    • 2007
  • The non-linearity of HPA(high power amplifier) which is an important component in modern communications systems introduces AM/AM and AM/PM distortion so that the transmitted signal is deteriorated. And, the I/Q unbalances and phase error which are generated by non-ideal components are inevitable physical phenomena and lead to performance degradation when we implement a practical two-dimensional (2-D) modulation system. In this paper, we provide an exact and general expression involving the 2-D Gaussian Q-function for the error probabilities of arbitrary 2-D signaling with I/Q amplitude and phase unbalances in nonlinear additive white Gaussian noise (AWGN) channels by using the coordinate rotation and shifting technique.

Symbol Error Probability of DVB-S2 System with I/Q Unbalances (I/Q 불균형이 고려된 DVB-S2 시스템의 심벌 오류 확률)

  • Im, In-Chul;Won, Seung-Chan;Yoon, Dong-Weon;Park, Sang-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9C
    • /
    • pp.810-819
    • /
    • 2007
  • The I/Q unbalance which is generated by non-ideal components such as a $90^{\circ}$ phase shifter and I/Q filters is an inevitable physical phenomenon and leads to performance degradation when we implement a coherent two-dimensional (2-D) modulation/demodulation system. This paper provides an exact and general expression for the SEP(symbol error probability) of DVB-S2 system with I/Q phase and amplitude unbalance over AWGN channel. Coordinate rotation and shift techniques used to redefine a received signal are key mathematical tools. In conclusion, the derived result is expressed as a linear combination of the 2-D Gaussian Q-functions.

Throughput and Delay Optimal Scheduling in Cognitive Radio Networks under Interference Temperature Constraints

  • Gozupek, Didem;Alagoz, Fatih
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.148-156
    • /
    • 2009
  • The fixed spectrum assignment policy in today's wireless networks leads to inefficient spectrum usage. Cognitive radio network is a new communication paradigm that enables the unlicensed users to opportunistically use the spatio-temporally unoccupied portions of the spectrum, and hence realizing a dynamic spectrum access (DSA) methodology. Interference temperature model proposed by Federal Communications Commission (FCC) permits the unlicensed users to utilize the licensed frequencies simultaneously with the primary users provided that they adhere to the interference temperature constraints. In this paper, we formulate two NP-hard optimal scheduling methods that meet the interference temperature constraints for cognitive radio networks. The first one maximizes the network throughput, whereas the second one minimizes the scheduling delay. Furthermore, we also propose suboptimal schedulers with linear complexity, referred to as maximum frequency selection (MFS) and probabilistic frequency selection (PFS). We simulate the throughput and delay performance of the optimal as well as the suboptimal schedulers for varying number of cognitive nodes, number of primary neighbors for each cognitive node, and interference temperature limits for the frequencies. We also evaluate the performance of our proposed schedulers under both additive white gaussian noise (AWGN) channels and Gilbert-Elliot fading channels.

Performance Analysis of DS-CDMA System using Space-Time Beamformers (시공간 빔포머를 이용한 DS-CDMA 시스템의 성능 분석)

  • 변건식;김성곤;이성신;박미선
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • As a channel of a DS-CDMA system is shared among several users, the receivers face the problem of MAI. Also the bandlimited channel leads to ISI. Both components are undesired, but unlike the additive noise process, which is usually completely unpredictable, their space-time structure helps to estimate and remove them. This paper investigates a DS-CDMA system with a fading multipath channel. The investigations have been separated into a channel estimation part and a reception part. In the estimation part of seperated two parts, the multipath parameters such as DOA and TOA are evaluated in this paper. In the part of receiver, we used these parameters and tested the performance of this receiver about space-time beamformers(Decorrelating, Match-Filter, Wiener-Hopf, Subspace-Based). To assess many different estimation techniques and beamformers, the simulation compared with theoretical values is performed.

Comparison Study of Channel Estimation Algorithm for 4S Maritime Communications (4S 해상 통신을 위한 채널 추정 알고리즘 비교 연구)

  • Choi, Myeong Soo;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.288-295
    • /
    • 2013
  • In this paper, we compare the existing channel estimation technique for 4S (Ship to Ship, Ship to Shore) maritime communications under AWGN channel model, Rician fading channel model, and Rayleigh fading channel model respectively. In general, the received signal is corrupted by multipath and ISI (Inter Symbol Interference). The estimation of a time-varying multipath fading channel is a difficult task for the receiver. Its performance can be improved if an appropriate channel estimation filter is used. The simulation is performed in MATLAB. In this simulation, we use the popular estimation algorithms, LMS (Least Mean Square) and RLS (Recursive Least-Squares) are compared with respect to AWGN, Rician and Rayleigh channels.

An impulse radio (IR) radar SoC for through-the-wall human-detection applications

  • Park, Piljae;Kim, Sungdo;Koo, Bontae
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.480-490
    • /
    • 2020
  • More than 42 000 fires occur nationwide and cause over 2500 casualties every year. There is a lack of specialized equipment, and rescue operations are conducted with a minimal number of apparatuses. Through-the-wall radars (TTWRs) can improve the rescue efficiency, particularly under limited visibility due to smoke, walls, and collapsed debris. To overcome detection challenges and maintain a small-form factor, a TTWR system-on-chip (SoC) and its architecture have been proposed. Additive reception based on coherent clocks and reconfigurability can fulfill the TTWR demands. A clock-based single-chip infrared radar transceiver with embedded control logic is implemented using a 130-nm complementary metal oxide semiconductor. Clock signals drive the radar operation. Signal-to-noise ratio enhancements are achieved using the repetitive coherent clock schemes. The hand-held prototype radar that uses the TTWR SoC operates in real time, allowing seamless data capture, processing, and display of the target information. The prototype is tested under various pseudo-disaster conditions. The test standards and methods, developed along with the system, are also presented.

Energy-Efficient Scheduling with Individual Packet Delay Constraints and Non-Ideal Circuit Power

  • Yinghao, Jin;Jie, Xu;Ling, Qiu
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2014
  • Exploiting the energy-delay tradeoff for energy saving is critical for developing green wireless communication systems. In this paper, we investigate the delay-constrained energy-efficient packet transmission. We aim to minimize the energy consumption of multiple randomly arrived packets in an additive white Gaussian noise channel subject to individual packet delay constraints, by taking into account the practical on-off circuit power consumption at the transmitter. First, we consider the offline case, by assuming that the full packet arrival information is known a priori at the transmitter, and formulate the energy minimization problem as a non-convex optimization problem. By exploiting the specific problem structure, we propose an efficient scheduling algorithm to obtain the globally optimal solution. It is shown that the optimal solution consists of two types of scheduling intervals, namely "selected-off" and "always-on" intervals, which correspond to bits-per-joule energy efficiency maximization and "lazy scheduling" rate allocation, respectively. Next, we consider the practical online case where only causal packet arrival information is available. Inspired by the optimal offline solution, we propose a new online scheme. It is shown by simulations that the proposed online scheme has a comparable performance with the optimal offline one and outperforms the design without considering on-off circuit power as well as the other heuristically designed online schemes.