• Title/Summary/Keyword: addition with carrying

Search Result 353, Processing Time 0.026 seconds

Development of Solid Lubricants for Oil-less Bush (오일리스 부시용 고체윤활제 개발)

  • Kong, Hosung;Han, Hung-Gu;Kim, Jin Uk;Kim, Kyoung Seok;Park, Jong Sik
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This work aims to develop a dry lubricant for oilless bush, especially a solid lubricant, thereby creating a coating method with improved properties of anti-friction and load-carrying capacity without oil lubrication. In this work, spherical-shaped powders of thermosetting resin such as polyimide (PI) are mixed with a binder matrix obtained by mixing a fluorocarbon compound resin such as Polytetrafluoroethylene (PTFE) or Ethylene tetra fluoro ethylene (ETFE) with itself or with a non-fluorocarbon thermoplastic resin such as Polyether ether ketone (PEEK). And these dry lubricant mixtures are thickly coated (200-300 mm in the thickness) on the inner surface of the bush by using a wet-typed air-spray deposition method. It was found that the load-carrying capacity of the solid lubricant for excavator bush (60 mm in diameter) that operates under a high load condition (at 40 MPa) is greatly improved owing to the spherical-shaped powders of thermosetting resin. In addition, the coefficient of friction at the sliding surface is also reduced less than 0.1. Thick coating also lowers the contact stress at the edge of a bush that results in better tribological performances. The result suggests that the lubrication performance and durability life of the bush can be remarkably improved even without lubrication (oil or grease).

Load-carrying Capacities of Safety Structures on Wind-resistant Analyses of Cable-stayed Bridge (사장교의 내풍해석을 통한 인명보호 구조물의 내하능력평가)

  • Huh, Taik-Nyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.587-594
    • /
    • 2022
  • In the 2000s, a lot of cable-type grand bridges are being built in consideration of economic aspects such as the reduction of logistics costs and the distribution of traffic volume due to rapid economic development. In addition, because the recently installed grand bridges are designed in an aesthetic form that matches the surrounding environment as well as the original function of the road bridge, and serves as a milestone in an area and is used as an excellent tourism resource, attracting many vehicles and people, there is an urgent need for a safety structure that can ensure the safety of not only vehicles but also people. In order to make cable-stayed bridge safe on wind for additional five safety structures, main girder models with and without safety structures for wind-tunnel experiments was made, and wind tunnel experiments was carried out to measure aerodynamic force coefficients. Also, wind-resistant analyses of 3D cable-stayed bridge were performed on the basis of wind-tunnel experiment results. From the wind tunnel experiments for the aerodynamic force coefficients of main girder with five safety structures and the wind resistant analyses of cable-stayed bridge without safety structure and with safety structure, it was concluded that the best form of wind-resistant safety was shown in the order of mesh, standard, bracing, hollow, and closed type. And wind-resistant safety of cable-stayed bridge with hollow and closed type on design wind speed 68.0m/sec was not secured. Finally, as five safety structures are installed, maximum rate of stress increments was shown in the order of steel main beam, steel floor beam, concrete floor beam and cables.

Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides

  • Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.37-49
    • /
    • 2019
  • In this study, the shear behaviour of reinforced concrete (RC) beams that were retrofitted using precast panels of ultra-high performance fiber reinforced concrete (UHPFRC) is presented. The precast UHPFRC panels were glued to the side surfaces of RC beams using epoxy adhesive in two different configurations: (i) retrofitting two sides, and (ii) retrofitting three sides. Experimental tests on the adhesive bond were conducted to estimate the bond capacity between the UHPFRC and normal concrete. All the specimens were tested in shear under varying levels of shear span-to-depth ratio (a/d=1.0; 1.5). For both types of configuration, the retrofitted specimens exhibited a significant improvement in terms of stiffness, load carrying capacity and failure mode. In addition, the UHPFRC retrofitting panels glued in three-sides shifted the failure from brittle shear to a more ductile flexural failure with enhancing the shear capacity up to 70%. This was more noticeable in beams that were tested with a/d=1.5. An approach for the approximation of the failure capacity of the retrofitted RC beams was evolved using a multi-level regression of the data obtained from the experimental work. The predicted values of strength have been validated by comparing them with the available test data. In addition, a 3-D finite element model (FEM) was developed to estimate the failure load and overall behaviour of the retrofitted beams. The FEM of the retrofitted beams was conducted using the non-linear finite element software ABAQUS.

A study on Train Control System(CBTC) in 5GHz Band (5GHz 대역의 열차제어(CBTC) 적용에 대한 연구)

  • Oh, Gwang-Rok;Park, Jong-Hun;Kim, Goo-Sik;Kim, Keon-Ho;Kim, Jong-Bok;Kim, Ki-Chun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.652-659
    • /
    • 2011
  • Due to overuse of commercial network systems such as bluetooth and WI-FI, the problems of frequency interruption and line-crossing may arise. For this reason, wireless communication frequency ISM 2.4GHz, a recently adapted concept in Korea which is employeed by RF-CBTC system, is predicted not to have guarantee for outstanding and continuous performance. Therefore in this study, considering these problems, 5GHz capacity wireless Lans with international standard 802.11a/b/g applied were installed in the underground urban transit areas and it was proved that these lans exceeded the performance level of 2.4GHz with international standard 802.11b which is being introduced in the nation. In addition, it was verified through carrying out an application test that the communication condition was stable in a running train with high speed in the tunnel.

  • PDF

A Research on 7 Cases of the Treatment Process for Patients with Idiopathic Parkinson's Disease or Parkinsonism (특발성 파킨슨병.파킨슨증후군 환자 7례의 치료경과사례 고찰)

  • Park, Byeong-Jun
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.3
    • /
    • pp.283-295
    • /
    • 2009
  • Objectives : Parkinson's disease is a chronic neuron-degenerative disease. The medication of dopamine, one of the most common treatment for the disease, has effects of improving the symptom, but when taken for a long term, the medicine brings about side-effects such as the phenomenon of medicinal efficacy disappearance and dyskinesia. In addition, it doesn't have any effects in slowing down or stopping the development of Parkinson's disease. Methods : Accordingly, this study aims to investigate the clinical cases to stop or improve the development of Parkinson's disease by carrying out an independent treatment with Oriental medicine and a combined treatment with Western and Oriental medicines respectively for over 6 months. Results and Conclusions : The results of the study is expected to be an important precedent for the treatment of neuron-degenerative diseases of cranial nerve including Parkinson's disease in the future.

  • PDF

Characteristics of Surface Roughness According to Wire Vibration Wire-cut Electric Discharge Machining of Aluminum Alloy 6061(II) (알루미늄 합금 6061에서 와이어 진동부가에 의한 와이어 컷 방전가공에 따른 표면 거칠기 특성(II))

  • Ryu, Cheong-Won;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.100-107
    • /
    • 2015
  • Recently, high-efficiency machining in the production of high-value products with a complex shape has constantly been required with the need for hybrid machining. In this study, in addition to the wire-cut E.D.M. and vibration used to present the possibility of a hybrid process by carrying out the aluminum alloy experiment, the hybrid process determines the nature of the surface. The selected experimental parameters are horizontality, waveform, amplitude, peak current, and frequency. The experimental results give guidelines for selecting reasonable machining parameters. The surface roughness was improved by about 20% with increases in the amplitude of the vibration.

Structural behaviour of HFRC beams retrofitted for shear using GFRP laminates

  • Vinodkumar, M.;Muthukannan, M.
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.79-85
    • /
    • 2017
  • This paper summarizes the experimental study of the shear behaviour of Hybrid Fibre Reinforced Concrete (HFRC) beams retrofitted by using externally bonded Glass Fibre Reinforced Polymer (GFRP) laminates. To attain the set-out objectives of the present investigation, steel fibre of 1% and polypropylene fibre of 0.30% was used for hybrid steel-polypropylene fibre reinforced concrete: whereas for hybrid glass-polypropylene fibre reinforced concrete, glass fibre by 0.03% and polypropylene fibre of 0.03% by volume of concrete was used. In this study, 9 numbers of beams were cast and tested into three groups (Group I, II & III). Each group containing 3 numbers of beams, out of which one serve as a control beam or a hybrid steel-polypropylene fibre reinforced concrete beam or a hybrid glass - polypropylene fibre reinforced concrete beam and the remaining two beams were preloaded until shear cracks appeared up to 75% of ultimate load and then preloaded beams (damaged beams) were retrofitted with GFRP laminates at shear zone in the form of strips, as one beam in vertical position and another beam in inclined position to restrict the shear cracks. Finally, the retrofitted beams were loaded until failure and test results were compared. The experimental tests have been conducted to investigate various parameters of structural performance, such as load carrying capacity, crack pattern and failure modes, load-deflection responses and ductility relations. The test results revealed that beams retrofitted using GFRP laminates considerably increased the load carrying capacity. In addition, it was found that beams retrofitted with inclined strip offers superior performance than vertical one. Comparing the test results, it was observed that hybrid steel-polypropylene fibre reinforced concrete beam retrofitted with GFRP laminates showed enhanced behaviour as compared to other tested beams.

A Study on the Fatigue Strength Improvement of the Fillet Welded Connections with respect to Post-Weld Treatment (용접 후처리에 의한 필렛용접부의 피로강도 향상에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.665-672
    • /
    • 2008
  • In the study herein, the fatigue test was conducted on the fillet welds of the load carrying cruciform joint, which is frequently used in the steel structures such as bridges, ships, etc. In addition, the fatigue strength was analyzed with respect to the different post-weld treatment. The treatment methods used include Toe Grinding, TIG Dressing, and Weld Profiling. The fatigue test was under constant amplitude with repeated load for these test specimens. In the load carrying full penetration fillet welded joints, regardless the conduction of the post-weld treatment or not, they all secured the fatigue strength of category "F", which exceeds the fatigue design specifications of BS Code. In the comparison of the fatigue strength upon the post-weld treatment, the fatigue strength tends to increase according to the order: Toe Grinding, TIG Dressing, and Weld Profiling.

Trading Strategies in Bulk Shipping: the Application of Artificial Neural Networks

  • Yun, Hee-Sung;Lim, Sang-Seop;Lee, Ki-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.40 no.5
    • /
    • pp.337-343
    • /
    • 2016
  • The core decisions of bulk shipping businesses can be summarized as the timing and the choice of period for which carrying capacity is traded. In particular, frequent decisions to trade freight either with repeated spot transactions or with a one-off long-term deal critically impact business performance. Even though a variety of freight trading strategies can be employed to facilitate the decisions, chartering practitioners have not been active in utilizing these strategies, and academic research has rarely proposed applicable solutions. The specific properties of freight as a tradable commodity are not properly reflected in existing studies, and limitations have been reported in their application to the real world. This research focused on the establishment of applicable freight trading strategies by taking into account two properties of freight: time perishability and term-dependant pricing. In addition to traditional trading strategies, artificial neural networks were applied for the first time to the test of freight trading strategies. The performances of the trading strategies were measured and compared to produce a remarkable outperformance of the ANN. This research is expected to make a significant contribution to chartering practices by enhancing the quality of chartering decisions and eventually enabling the effective management of freight rate risk. In addition to methodological expansion, the result will propose a way to approach the controversial issue of freight market efficiency.

Effect of FRP composites on buckling capacity of anchored steel tanks

  • Al-Kashif, M.A.;Ramadan, H.;Rashed, A.;Haroun, M.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.361-371
    • /
    • 2010
  • Enhancement in the seismic buckling capacity of steel tanks caused by the addition of fiber reinforced polymers (FRP) retrofit layers attached to the outer walls of the steel tank is investigated. Three-dimensional non-linear finite element modeling is utilized to perform such analysis considering non linear material properties and non-linear large deformation large strain analysis. FRP composites which possess high stiffness and high failure strength are used to reduce the steel hoop stress and consequently improve the tank capacity. A number of tanks with varying dimensions and shell thicknesses are examined using FRP composites added in symmetric layers attached to the outer surface of the steel shell. The FRP shows its effectiveness in carrying part of the hoop stresses along with the steel before steel yielding. Following steel yielding, the FRP restrains the outward bulging of the tank and continues to resist higher hoop stresses. The percentage improvement in the ultimate base moment capacity of the tank due to the addition of more FRP layers is shown to be as high as 60% for some tanks. The percentage of increase in the tank moment capacity is shown to be dependent on the ratio of the shell thickness to the tank radius (t/R). Finally a new methodology has been explained to calculate the location of Elephant foot buckling and consequently the best location of FRP application.