• Title/Summary/Keyword: addition tests

Search Result 3,852, Processing Time 0.026 seconds

Laboratory Diagnosis of Invasive Candidiasis

  • Ellepola Arjuna N.B.;Morrison Christine J.
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.65-84
    • /
    • 2005
  • Invasive candidiasis is associated with high morbidity and mortality. Clinical diagnosis is complicated by a lack of specific clinical signs and symptoms of disease. Laboratory diagnosis is also complex because circulating antibodies to Candida species may occur in normal individuals as the result of commensal colonization of mucosal surfaces thereby reducing the usefulness of antibody detection for the diagnosis of this disease. In addition, Candida species antigens are often rapidly cleared from the circulation so that antigen detection tests often lack the desired level of sensitivity. Microbiological confirmation is difficult because blood cultures can be negative in up to 50% of autopsy-proven cases of deep-seated candidiasis or may only become positive late in the infection. Positive cultures from urine or mucosal surfaces do not necessarily indicate invasive disease although can occur during systemic infection. Furthermore, differences in the virulence and in the susceptibility of the various Candida species to antifungal drugs make identification to the species level important for clinical management. Newer molecular biological tests have generated interest but are not yet standardized or readily available in most clinical laboratory settings nor have they been validated in large clinical trials. Laboratory surveillance of at-risk patients could result in earlier initiation of antifungal therapy if sensitive and specific diagnostic tests, which are also cost effective, become available. This review will compare diagnostic tests currently in use as well as those under development by describing their assets and limitations for the diagnosis of invasive candidiasis.

Experimental and numerical analyses of RC beams strengthened in compression with UHPFRC

  • Thomaz E.T. Buttignol;Eduardo C. Granato;Tulio N. Bittencourt;Luis A.G. Bitencourt Jr.
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.511-529
    • /
    • 2023
  • This paper aims to better understand the bonding behavior in Reinforced Concrete beams strengthened with an Ultra-High Performance Fiber Reinforced Concrete (RCUHPFRC) layer on the compression side using experimental tests and numerical analyses. The UHPFRC mix design was obtained through an optimization procedure, and the characterization of the materials included compression and slant shear tests. Flexural tests were carried out in RC beams and RC-UHPFRC beams. The tests demonstrated a debonding of the UHPFRC layer. In addition, 3D finite element analyses were carried out in the Abaqus CAE program, in which the interface is modeled considering a zero-thickness cohesive-contact approach. The cohesive parameters are investigated, aiming to calibrate the numerical models, and a sensitivity analysis is performed to check the reliability of the assumed cohesive parameters and the mesh size. Finally, the experimental and numerical values are compared, showing a good approximation for both the RC beams and the RC strengthened beams.

Severe acid rain simulation using geotechnical experimental tests with mathematical modeling

  • Raheem, Aram M.;Ali, Shno M.
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.549-565
    • /
    • 2022
  • Severe acid rains can be a major source for geotechnical and environmental problems in any soil depending on the acid type and concentration. Hence, this study investigates the individual severe effects of sulfuric, hydrochloric and nitric acids on the geotechnical properties of real field soil through a series of experimental laboratory tests. The laboratory program consists of experimental tests such as consistency, compaction, unconfined compression, pH determination, electrical conductivity, total dissolved salts, total suspended solids, gypsum and carbonates contents. The experimental tests have been performed on the untreated soil and individual acid treated soil for acid concentrations range of 0% to 20% by weight. In addition, a unique hyperbolic mathematical model has been used to predict significant geotechnical characteristics for acid treated soil. The plastic and liquid limits and optimum moisture content have been increased under the effect of all the used acids whereas the maximum dry density and unconfined stress-strain behavior have been decreased with increasing the acid concentrations. Moreover, the used hyperbolic mathematical model has predicted all the geotechnical characteristics very well with a very high coefficient of determination (R2) value and lowest root mean square error (RMSE) estimate.

Static and dynamic characteristics of silty sand treated with nano-silica and basalt fiber subjected to freeze-thaw cycles

  • Hamid Alizadeh Kakroudi;Meysam Bayat;Bahram Nadi
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.85-95
    • /
    • 2024
  • This study investigates the influence of nano-silica and basalt fiber content, curing duration, and freeze-thaw cycles on the static and dynamic properties of soil specimens. A comprehensive series of tests, including Unconfined Compressive Strength (UCS), static triaxial, and dynamic triaxial tests, were conducted. Additionally, scanning electron microscopy (SEM) analysis was employed to examine the microstructure of treated specimens. Results indicate that a combination of 1% fiber and 10% nano-silica yields optimal soil enhancement. The failure patterns of specimens varied significantly depending on the type of additive. Static triaxial tests revealed a notable reduction in the brittleness index (IB) with the inclusion of basalt fibers. Specimens containing 10% nano-silica and 1% fiber exhibited superior shear strength parameters and UCS. The highest cohesion and friction angle were obtained for treated specimens with 10% nano-silica and 1% fiber, 90 kPa and 37.8°, respectively. Furthermore, an increase in curing time led to a significant increase in UCS values for specimens containing nano-silica. Additionally, the addition of fiber resulted in a decrease in IB, while the addition of nano-silica led to an increase in IB. Increasing nano-silica content in stabilized specimens enhanced shear modulus while decreasing the damping ratio. Freeze-thaw cycles were found to decrease the cohesion of treated specimens based on the results of static triaxial tests. Specimens treated with 10% nano-silica and 1% fiber experienced a reduction in shear modulus and an increase in the damping ratio under freeze-thaw conditions. SEM analysis reveals dense microstructure in nano-silica stabilized specimens, enhanced adhesion of soil particles and fibers, and increased roughness on fiber surfaces.

A Study on the Determination of Density and Moisture Content of Asphalt Concrete Pavement and Subgrade Using Nuclear Density Meter (방사선측정치를 이용한 아스콘 포장 및 노상의 현장밀도와 함수비 측정에 관한 연구)

  • 진성기;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.4
    • /
    • pp.103-116
    • /
    • 1994
  • The objective of this study was to determine the criteria for density and moisture content measurements made with a nuclear density meter on common materials in the construction field. The study also sought to test a full-type nuclear density meter in controlling the density of overlay layers( 2.5~5.0cm). In order to determine the accuracy and reliablility of nuclear guage measurements made on construction materials, laboratory and field tests were conducted. Wooden blocks( 65 x 45 ${\times}$ 50 cm) and a special steel compactor( 4.7kg) were constructed in order to carry out tests which were conducted on three different materials; coarse gramed soil, fine grained soil, and AC material. Throughout all laboratory and field tests, the nuclear density and moisture content were determined using Humboldt 5OOLP nuclear gauge. The tests on subgrade material entailed obtaining density measurements by means of both the sand replacement method and the nuclear density meter. The results of the sand replacement method were then compared to the readings recorded bu the meter. As in the subgrade material tests, density measurements made during AC pavement tests were also determined using the unclear meter in addition to a second means; through the core method. The meter readings and core densties were compared as was done in the tests on subgrade materials. The correlation between the results of the sand replacement test( also, the core method) and meter readings on subgrade material was then determined. Sirnilarly, the observed results were then analyzed through linear regression. The tests to determine thin-lift density by means of a full-type nuclear density meter also conducted on the overlay layers( about 4. 8cm thickness) above AC pavements at road construction sities in Korea.

  • PDF

A Study on the Parameters for Icing Airworthiness Flight Tests of Surion Military Helicopter (수리온 군용헬기의 결빙 감항인증 비행시험을 위한 파라미터 고찰)

  • Hur, Jang-Wook;Kim, Chan-Dong;Jang, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.526-532
    • /
    • 2015
  • In order to relieve limitation of flight operation under icing condition and verify its operation in adverse weather condition for Surion, military helicopter developed in Korea, airworthiness certification in icing condition is required. The process of Surion icing certification should be considered by implementation of four methods by step such as CFD analysis, simulated flight tests, artificial icing flight tests, and natural icing flight tests. For Surion icing flight tests, these are required 20~30 sorties and 20~23 hours in artificial icing condition; 20~30 sorties and 20~22 hours in natural icing condition. In addition, to proceed with efficient flight tests, it is necessary to implement artificial icing flight tests in LWC $0.5{\sim}1.0g/m^3;$ natural icing flight tests in less than LWC $0.5g/m^3$.

Evaluation of Shear Wave Velocity of Engineering Fill by Resonant Column and Torsional Shear Tests (공진주와 비틂전단시험에 의한 성토지반의 전단파속도 추정에 관한 연구)

  • Park, Jong-Bae;Sim, Young-Jong;Jung, Jong-Suk;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.387-395
    • /
    • 2011
  • According to the seismic design criteria for structural buildings in Korea, the ground is classified into 5 types based on the average shear wave velocity measured from elastic wave tests on site and seismic load applied to the structure is estimated. However, elastic wave tests in site, however, on the engineering fill, cannot be performed during the construction period. Therefore, to evaluate shear wave velocity considering field conditions, resonant column (RC) and torsional shear (TS) tests are performed and compared with various elastic wave test results. As a result, if confining pressure for the tests using engineering fill are considered properly, we can obtain similar results comparing with those of elastic wave tests. In addition, by considering the effect of maximum shear modulus and confining pressure by RC/TS tests, n values shows typical values ranging from 0.434 to 0.561 so that utilization of RC/TS tests can be useful to infer shear modulus in field.

A Study on the Validity of the Grit Test as a Tool for Identification of Mathematically Gifted Elementary Students (초등수학영재 판별 도구로서 그릿 검사 타당성 검증)

  • Heo, Jisung;Park, Mangoo
    • Communications of Mathematical Education
    • /
    • v.36 no.3
    • /
    • pp.355-372
    • /
    • 2022
  • The purpose of this study was to find out whether the Grit test is valid as a test tool for Identification of mathematically gifted elementary students. For this study, we conducted Grit tests, Mathematical Problem Solving Aability Tests, Mathematical Creative Ability Tests, and Mathematically Gifted Behavior Characteristic Tests on 39 ordinary students at Seoul public elementary school and 20 mathematically gifted students at the Education Center for Gifted Education, and analyzed correlation with each test. In addition, we conducted a discriminant analysis to find out how the Grit test can accurately determine the members of the mathematically gifted student group and the ordinary student group. As a result of Pearson's correlation analysis, the Grit test was .521 with the Mathematical Problem Solving Ability Tests, .440 with the Mathematical Creative Ability Tests, and .601 with the Mathematically Gifted Behavior Characteristic Tests, according to significant positive correlation at p<.01. Through this, it can be confirmed that the Grit test has a high official validity as a tool for determining mathematically gifted students. As a result of conducting a discriminant analysis to confirm the classification discrimination ability of the elementary mathematically gifted student group and ordinary student group of the Grit test, Wilk's λ was .799(p<.001). We confirm that the Grit test is a significant variable in determining the mathematically gifted student group and ordinary student group. In addition, 64.4% of the entire group was accurately classified as a result of group classification through discriminant analysis. This shows that the Grit test can be actually used as a test tool to determine mathematically gifted elementary students.

Strength Characteristics of Solidified Cement Grout on Curing Solution and Environmental Effects (시멘트 고결체의 양생수에 따른 강도특성 및 환경적 영향에 관한 연구)

  • 천병식;이재영;김경민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.689-696
    • /
    • 2003
  • In this study, ordinary portland cement, slag cement and micro cement which have been used in the construction fields were evaluated for the environmental effects and compression strength characteristics for curing solution. To find the leaching of C $r^{6+}$ characteristics in cement grouts, C $r^{6+}$ content tests were performed for the raw materials(cement powder). In addition, C $r^{6+}$ leaching tests were peformed for the homo-gel samples according to change of pH and each curing solution with the deionized water and leachate. Then, the unconfined compression strength tests were peformed with the homo-gel samples and the amount of changed C $r^{6+}$ was measured by curing solution.

  • PDF

Experimental Study on Evaluation of Bonding Strength of Adhesively Bonded Joints by Adhesive (접착제 접합 이음부 접합강도 평가에 대한 실험적 연구)

  • Kang, Ki-Yeob;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.62-67
    • /
    • 2012
  • In this study, the bonding strengths of adhesively bonded joints are experimentally investigated. A series of lap-shear tests are conducted using single lap type adhesive joints. In order to analyse the joint fabrication factors that affected the bonding strength, the parametric tests are conducted with various thickness of adhesive, surface roughness and fillet of adhesive. In addition, for the comparative study with the welded joint, lap-shear tests using specimens with 2 welded sides and 4 welded sides are also carried out. The quantitative results of the strength analysis are summarized, and some proposals are made on setting up testing standards for adhesively bonded joints.