• 제목/요약/키워드: adaptive parameter control

검색결과 659건 처리시간 0.025초

적응 극점 배치 및 자기동조 제어 방법에 의한 로보트 매니퓰레이터 제어 (Adaptive Pole-Placement and Self-Tuning Control for a Robotic Manipulator)

  • 이상효;양태규
    • 대한전기학회논문지
    • /
    • 제37권9호
    • /
    • pp.655-662
    • /
    • 1988
  • An adaptive control scheme has been recognized as an effective approach for a robot manipulator to track a deired trajectory in spite of the presence of nonlinearies and parameter uncertainties in robot dynamic models. In this paper, an adaptive control scheme for a robot manipulator is proposed to design the self-tuning controller which controls the extended linearized perturbaton model via the pole placement, and this control. The feasibility of the controller is demonstrated by the simulation about position control of a three-link manipulator with payload and parameter uncertainty.

  • PDF

추가 보정항을 이용한 시변 시스템의 기준 모델 적응 제어 (Model Reference Adaptive Control of a Linear Time-Varying System with an Additional Compensation Term)

  • 이동현;윤태웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.54-57
    • /
    • 2002
  • In this paper model reference adaptive control (MRAC) of linear time-varying(LTV) systems is considered. MRAC for a linear time invariant(LTI) system does not assure the boundedness of the output and parameter estimation errors in the presence of time variations of the parameters. However, changing the adaptive laws such as use of $\sigma$-modification can result in the boundedness of the output and parameter estimation errors[5]. Together with the $\sigma$-modification in the adaptive law, we also modify the control law by adding an additional term to the standard control law. The additional term leads to smaller bounds of the output and parameter estimation errors when compared to the case where only the standard control law is applied.

  • PDF

Adaptive Control for the Conventional Mode of Operation of MEMS Gyroscopes

  • Park, Sungsu;Roberto Horowitz
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.39.2-39
    • /
    • 2002
  • This paper presents adaptive add-on control algorithms for theconventional mode of operation of MEMS z-axis gyroscopes. This scheme is realized by adding an outer loop to a conventional force-balancing scheme that includes a parameter estimation algorithm. The parameter adaptation algorithm estimates the angular rate, identifies and compensates the quadrature error, and may permit on-line automatic mode tuning. The convergence and resolution analysis show that the proposed adaptive add-on control scheme prevents the angular rate estimate from being contaminated by the quadrature error, while keeping ideal resolution performance of a conventional force-balancing scheme.

  • PDF

에지기반의 불연속 경계적응 영상 평활화 알고리즘 (An Edge-Based Algorithm for Discontinuity Adaptive Image Smoothing)

  • 강동중;권인소
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.273-273
    • /
    • 2000
  • We present a new scheme to increase the performance of edge-preserving image smoothing from the parameter tuning of a Markov random field (MRF) function. The method is based on automatic control of the image smoothing-strength in MRF model ing in which an introduced parameter function is based on control of enforcing power of a discontinuity-adaptive Markov function and edge magnitude resulted from discontinuities of image intensity. Without any binary decision for the edge magnitude, adaptive control of the enforcing power with the full edge magnitude could improve the performance of discontinuity-preserving image smoothing.

  • PDF

비선형 시스템의 TSK 퍼지모델 기반 하이브리드 적응제어 (TSK Fuzzy Model Based Hybrid Adaptive Control of Nonlinear Systems)

  • Kim, You-Keun;Kim, Jae-Hun;Hyun, Chang-Ho;Kim, Eun-Tai;Park, Mi-Gnon
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.211-216
    • /
    • 2004
  • In this thesis, we present the Takagi-Sugeno-Kang (TSK) fuzzy model based adaptive controller and adaptive identification for a general class of uncertain nonlinear dynamic systems. We use an estimated model for the unknown plant model and use this model for designing the controller. The hybrid adaptive control combined direct and indirect adaptive control based on TSK fuzzy model is constructed. The direct adaptive law can be showed by ignoring the identification errors and fails to achieve parameter convergence. Thus, we propose an TSK fuzzy model based hybrid adaptive (HA) law combined of the tracking error and the model ins error to adjust the parameters. Using a Lyapunov synthesis approach, the proposed hybrid adaptive control is proved. The hybrid adaptive law (HA) is better than the direct adaptive (DA) method without identifying the model ins error in terms of faster and improved tracking and parameter convergence. In order to show the applicability of the proposed method, it is applied to the inverted pendulum system and the performance is verified by some simulation results.

  • PDF

Hopfield 신경망의 파라미터 추정을 이용한 간접 적응 가변구조제어 (Indirect Adaptive Sliding Mode Control Using Parameter Estimation of Hopfield Network)

  • 함재훈;박태건;이기상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1037-1041
    • /
    • 1996
  • Input-output linearization technique in nonlinear control does not guarantee the robustness in the presence of parameter uncertainty or unmodeled dynamics, etc. However, it has been used as an important preliminary step in achieving additional control objectives, for instance, robustness to parameter uncertainty and disturbance attenuation. An indirect adaptive control scheme based on input-output linearization is proposed in this paper. The scheme consists of a Hopfield network for process parameter identification and an adaptive sliding mode controller based on input-output linearization, which steers the system response into a desired configuration. A numerical example is presented for the trajectory tracking of uncertain nonlinear dynamic systems with slowly time-varying parameters.

  • PDF

로봇 매니퓰레이터에 대한 강인한 적응 제어기의 설계 (Robust adaptive controller design for robot manipulators)

  • 정석우;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.889-894
    • /
    • 1993
  • This paper presents a robust adaptive control scheme based on the Lyapunov design for robot manipulators subjected to inertial parameter uncertainties and bounded torque disturbances. The scheme is a modified version of the adaptive computed torque method which adopts a dead zone into the adaptation mechanism so as to avoid parameter drifts by disturbances. It is shown via stability analysis and computer simulations that all the signals in the overall adaptive system are bounded and tracking errors lie within a prespecified bound.

  • PDF

상호 연계된 시스템의 비집중 적응제어에 관한 연구 (A study on the dencentraliaied adaptive control of interconnected systems)

  • 이준호;이기서
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.503-507
    • /
    • 1989
  • A new decentralized adaptive controller design is proposed. In large scale interconnected system with unknown parameters, nonlinearities and bounded disturbances, even though the interconnection is weak, the controller parameter drifts due to the interconnection, so the decentralized adaptive controller comes to be unstable. The proposed new decentralized adaptive controller guarantees exponential convergence of tracking and parameter errors to residual sets which depend on the bound for the local disturbances and interconnections as well as on some arbitrary design parameters.

  • PDF

선형시스템을 위한 개선된 수렴속도를 갖는 기준모델 적응제어 (Model Reference Adaptive Control for Linear System with Improved Convergence Rate-parameter Adaptation Method)

  • Lim, Kye-Young
    • 대한전기학회논문지
    • /
    • 제37권12호
    • /
    • pp.884-893
    • /
    • 1988
  • Adaptive controllers for linear unknown coefficient system, that is corrupted by disturbance, are designed by parameter adaptation model reference adaptive control(MRAC). This design is stemmed from the Lyapunov direct method. To reduce the model following error and to improve the convergence rate of the design, an indirect-suboptimal control law is derived. Proper compensation for the effects of time-varying coefficients and plant disturbance are suggested. In the design procedure no complete identification of unknown coefficients are required.

  • PDF

종방향 자율주행을 위한 성능 지수 및 인간 모사 학습을 이용하는 구동기 고장 탐지 및 적응형 고장 허용 제어 알고리즘 (Actuator Fault Detection and Adaptive Fault-Tolerant Control Algorithms Using Performance Index and Human-Like Learning for Longitudinal Autonomous Driving)

  • 오세찬;이종민;오광석;이경수
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.129-143
    • /
    • 2021
  • This paper proposes actuator fault detection and adaptive fault-tolerant control algorithms using performance index and human-like learning for longitudinal autonomous vehicles. Conventional longitudinal controller for autonomous driving consists of supervisory, upper level and lower level controllers. In this paper, feedback control law and PID control algorithm have been used for upper level and lower level controllers, respectively. For actuator fault-tolerant control, adaptive rule has been designed using the gradient descent method with estimated coefficients. In order to adjust the control parameter used for determination of adaptation gain, human-like learning algorithm has been designed based on perceptron learning method using control errors and control parameter. It is designed that the learning algorithm determines current control parameter by saving it in memory and updating based on the cost function-based gradient descent method. Based on the updated control parameter, the longitudinal acceleration has been computed adaptively using feedback law for actuator fault-tolerant control. The finite window-based performance index has been designed for detection and evaluation of actuator performance degradation using control error.